Maturity and oil-cracking of the Ordovician oils from Tahe Oilfield,Tarim Basin,NW China

Expand
  • 1.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083,China;
    2.College of Resources and Environment,Yangtze University,Wuhan 430100,China

Received date: 2016-11-09

  Revised date: 2016-12-26

  Online published: 2017-02-10

Abstract

The maturity of the Ordovician oils from Tahe Oilfield of Tarim Basin,NW China was assessed by various maturity parameters,such as biomarkers,aromatic parameters and diamondoid parameters.Both Ts/(Ts+Tm) and C29Ts/(C29H+C29Ts) values indicated that the maturity of oils has not reached the condensates stages,which is in consistent with the maturity obtained by MPI-1.However the diamondoid maturity suggested that the oil maturity is in the range of 1.1%-1.6% RO,which is obviously higher than that of the maturity obtained by biomarker and MPI-1.This discrepancy of maturity may reflect the Ordovician reservoir have multiple filling history.The concentration of methyldiamantane suggested that the methyldiamantane concentration of oils is scattered and increase slowly when Ts/(Ts+Tm) value is lower than 0.55,and the content increases rapidly when Ts/(Ts+Tm) value is higher than 0.55.Based on the diamondoid concentration of oils from different age,it is proposed that the diamondoid baseline is about 15×10-6 in the Tahe Oilfield.In general,the concentration of methyldiamantane of most Ordovician oils ranges from 4×10-6  to 35×10-6,suggesting that the degree of oil-cracking is lower than 50% and the deep Ordovician has the potential of oil exploration.The distribution of the concentration of methyldiamantane is characterized by high in east,low in west,high in south and low in north,suggesting two migration pathways are from south to north, from east to west, respectively, which is consistent to the migration results obtained from oil density and maturity parameters such as Ts/(Ts+Tm).

Cite this article

Ma An-lai,Jin Zhi-jun,Zhu Cui-shan . Maturity and oil-cracking of the Ordovician oils from Tahe Oilfield,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2017 , 28(2) : 313 -323 . DOI: 10.11764/j.issn.1672-1926.2017.01.003

References

[1]Peter K E,Walters C C,Moldowan J M.The biomarkers Guide Volume 2:Biomarkers and Isotopes in Petroleum Exploration and Earth History[M].Cambridge:Cambridge University Press,2005.
[2]Ma Anlai,Jin Zhijun,Wang Yi.Problems of oil-source correlation for marine reservoirs in Paleozoic craton area in Tarim Basin and future direction of research[J].Oil & Gas Geology,2006,27(3):356-372.[马安来,金之钧,王毅.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向[J].石油与天然气地质,2006,27(3):356-372.]
[3]Farrimond P,Taylor A,TelnAEs N.Biomarker maturity parameters:The role of generation and thermal degradation[J].Organic Geochemisry,1998,29(5-7):1181-1197.
[4]Alexander R,Kagi R I,Rowland S J,et al.The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums[J].Geochimica et Cosmochimica Acta,1985,49(2):385-395.
[5]Van Aarssen B G K,Bastow T P,Alexander R et al.Distributions of methylated naphthalenes in crude oils:indicators of maturity,biodegradation and mixing[J].Organic Geochemistry,1999,30(10):1213-1227.
[6]Radke M,Welte D H.The methylphenanthrene index (MPI):a maturity parameter bases on aromatic hydrocarbons[A]//Bjoroy M,Albrecht C,Cornford C,et al.Advances in Organic Geochemistry.Wiley,Chichester,1981:504-512.
[7]Chakhmakhchev A,Suzuki M,Takayama K.Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997,26(7/8):483-489.
[8]Chen J,Fu J,Shen G,et al.Diamondoid hydrocarbon ratios:Novel maturity indices for highly mature crude oil[J].Organic Geochemistry,1996,25(3/4):179-190.
[9]Ma Anlai.New advancement in application of diamondoids on organic geochemistry[J].Natrual Gas Geoscience,2016,27(5):851-860.[马安来.金刚烷类化合物在有机地球化学中的应用进展[J].天然气地球科学,2016,27(5):851-860.]
[10]Dhal J E,Moldowan J M,Peter K E,et al.Diamondoid hydrocarbons as indicators of natural oil cracking[J].Nature,1999,399(5):54-56.
[11]Xiao Xianming,Song Zhiguang,Liu Dehan,et al.The Tazhong hybrid petroleum system,Tarim Basin,China[J].Marine and Petroleum Geology,2000,17(1):1-12.
[12]Sun Hao,Li Sumei,Zhang Baoshou.Characteristics and genesis of marine hydrocarbons in the Halahatang Sag in the northern Tarim Basin[J].Petroleum Geology & Experiment,2015,37(6):704-712.[孙浩,李素梅,张宝收.塔里木盆地北部哈拉哈塘凹陷海相油气特征与成因[J].石油实验地质,2015,37(6):704-712.]
[13]Li Sumei,Zhang Baoshou,Xing Lantian,et al.Geochemical features of deep hydrocarbon migration and accumulation in Halahatang-Yingmaili area of the northern Tarim Basin[J].Acta Petrolei Sinica,2015,36(S2):92-101.[李素梅,张宝收,邢蓝田,等.塔北哈拉哈塘—英买力地区深层油气运移与成藏地球化学特征[J].石油学报,2015,36(S2):92-101.]
[14]Ma Anlai,Jin Zhijun,Zhu Cuishan,et al.Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J].Acta Petrolei Sinica,2009,30(2):214-218.[马安来,金之钧,朱翠山,等.塔河油田原油中金刚烷化合物绝对定量分析[J].石油学报,2009,30(2):214-218.]
[15]Wingert W S.GC-MS analysis of diamondoid hydrocarbons in Smackover petroleum[J].Fuel,1992,71(1):37-43.
[16]Cui Jingwei,Wang Tieguan,Wang Chunjiang,et al.Quantitative assessment and significance of gas washing of oil in Block 9 of the Tahe Oilfield,Tarim Basin,NW China[J].Chinese Journal of Geochemistry,2012,31(2):165-173.
[17]Kolaczkowska E,Slougui N E,Watt D S,et al.Thermodynamic stability of various alkylated,dealkylated,and rearranged 17α- and 17β-hopnae isomers using molecular mechanics calculations[J].Organic Geochemistry,1990,16(4):1033-1038.
[18]Zhang S,Huang H,Xiao Z,et al.Geochemistry of Paleozoic marinr petroleum from the Tarim Basin,NW China(Part 2):Maturity assessment[J].Organic Geochemistry,2005,36(8):1215-1225.
[19]Zhang S,Su J,Wang X,et al.Geochemistry of Paleozoic marine petroleum from the Tarim Basin,NW China(Part 3):Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J].Organic Geochemistry,2011,42(11):1394-1410.
[20]Zhu G,Weng N,Wang H,et al.Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate,Tarim Basin,China:Implications for hydrocarbon exploration in deep-buried strata[J].Marine and Petroleum Geology,2015,62(1):14-27.
[21]Cai C,Xiao Q,Fang C,et al.The effect of thermalchemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Organic Geochemistry,2016,101(11):49-62
[22]Ma A,Zhang S,Zhang D.Ruthenium-ion-catalyzed oxidation of asphaltenes of heavy oils in Lunnan and Tahe Oilfields in Tarim Basin,NW China[J].Organic Geochemistry,2008,39(11):1502-1511.
[23]Wang T G,He F,Wang C,et al.Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield,Tarim Basin,NW China[J].Organic Geochemistry,2008,39(11):1637-1646.
[24]Fang C,Xiong Y,Li Y,et al.The origin and evolution of adamantane and diamantanes in petroleum[J].Geochemica et Cosmochimica Acta,2013,120(11):109-120.
[25]Springer M V,Garcia D F,Goncalves F T T,et al.Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin,Colombia[J].Organic Geochemistry,2010,41(9):1013-1018.
[26]Moldowan J M,Dah J,Zinniker D,et al.Underutilized advanced geochemical technologies for oil and gas exploration and production-1.The diamondoids[J].Journal of Petroleum Science and Engineering,2015,126(1):87-96.
[27]Claypool G M,Mancini E A.Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation,southwestern Alabama[J].AAPG Bulletin,1989,73(7):904-924.
[28]McCain W D Jr,Bridges B.Volatile oils and retrograde gases:What’s the difference[J].Petroleum Engineer International,1994,66(1):35-36.
[29]Hunt J M.Petroleum geochemistry and geology[M].2nd ed.New York:W.H.Freeman and Company,1996.
[30]Duan Yi,Wang Chuanyuan,Zheng Zhaoyang,et al.Distribution of double diamantine hydrocarbons in crude oils from Tahe Oilfield and its implication for oil and gas migration[J].Natural Gas Geoscience,2007,18(5):693-696.[段毅,王传远,郑朝阳,等.塔里木盆地塔河油田原油中双金刚烷分布特征与油气运移[J].天然气地球科学,2007,18(5):693-696.]

Outlines

/