Influencing factors and technology optimization of coalbed methane well fracturing:Taking Hancheng mining area as an example
Received date: 2016-05-26
Revised date: 2016-11-19
Online published: 2017-02-10
Based on a large number of fracturing data at home and abroad,through theoretical and experimental data,the influences of different parameters on hydraulic fracture formation and extension are studied.The parameters include the difference coefficient of horizontal principal stress within layers,the difference of minimum horizontal principal stress between layers,the rock mechanics parameters,the difference coefficient of internal coal and rock fracture pressures and the properties of rock interface.According to field fracturing and production data,the influences of geological and fracturing engineering parameters on gas production are analyzed,such as the earth stress conditions,the fracturing technology,the volume of fracturing fluid,the amount of sand,the system of fracturing fluid,the interval of fracturing perforation and the technology of secondary fracturing,all of which have important influences on the production.Through the optimization of the technology,the reasonable fracturing technology and parameters are offered for Hancheng mining area.The ideal effects have been achieved in the practical field application.This work provides a theoretical basis and a reference index for the implementation of the middle-high rank coal reservoirs fracturing technology in China.
Key words: Coal bed methane; Fracturing; Gas production; Principal stress; Cracks
Ma Ping-hua,Huo Meng-ying,He Jun,Peng Ying-ming,Shao Xian-jie,Jie Jing-tao . Influencing factors and technology optimization of coalbed methane well fracturing:Taking Hancheng mining area as an example[J]. Natural Gas Geoscience, 2017 , 28(2) : 296 -304 . DOI: 10.11764/j.issn.1672-1926.2016.12.011
[1]Thotsaphon C,Chen H,Lawrence T.Impacts of Permeability Anisotropy and Pressure Interference on Coalbed Methane Production[R].SPE Rocky Mountain Petroleum Technology Conference.Colorado,2001.
[2]Lou Jianqing.Factors of influencing production of coalbed gas wells[J].Natural Gas Industry,2004,24(4):62-64.[娄剑青.影响煤层气井产量的因素分析[J].天然气工业,2004,24(4):62-64.]
[3]Shen Feng,Zhang Fengsan,Wu Jinqiao,et al.The application and study on rheological properties of CO2foam fracturing fluid[J].Natural Gas Geoscience,2016,27(7):566-570.[申峰,张锋三,吴金桥,等.CO2泡沫压裂液流变特性研究及应用[J].天然气地球科学,2016,27(7):566-570.]
[4]Tang Shuheng,Zhu Baocun,Yan Zhifeng.Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J].Journal of China Coal Society,2011,36(1):65-69.[唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69.]
[5]Yang Jiaosheng,Wang Yibing,Li Anqi,et al.Experimental study on propagation mechanism of complex hydraulic fracture in coal-bed[J].Journal of China Coal Society,2012,37(1):73-77.[杨焦生,王一兵,李安启,等.煤岩水力裂缝扩展规律试验研究[J].煤炭学报,2012,37(1):73-77.]
[6]Liu Zhoubo,Yao Fei.The minimum main stress margin between formation effects on hydraulic fracture extension[J].Drilling Fluid & Completion Fluid,1998,15(4):16-18.[刘舟波,姚飞.层间最小主应力差对水力裂缝扩展的影响[J].钻井液与完井液,1998,15(4):16-18.]
[7]Song Chenpeng,Lu Yiyu,Jia Yunzhong,et al.Effect of coal-rock interface on hydraulic fracturing propagation[J].Journal of Northeastern University:Natural Science,2014,35(9):1340-1345.[宋晨鹏,卢义玉,贾云中,等.煤岩交界面对水力压裂裂缝扩展的影响[J].东北大学学报:自然科学版,2014,35(9):1340-1345.]
[8]Levine J R.Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J].Geological Society London Special Publications,1996,109(1):197-212.
[9]Zhang Shicheng,Guo Tiankui,Zhou Tong,et al.Fracture propagation mechanism experiment of hydraulic farcturing in natural shale[J].Acta Petrolei Sinica,2014,35(3):496-503.[张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503.]
[10]Liu Yuzhang,Fu Haifeng,Ding Yunhong,et al.Large scale experimental simulation and analysis of interlayer stress difference effect on hydraulic fracture extension[J].Oil Drilling & Production Technology,2014,36(4):88-92.[刘玉章,付海峰,丁云宏,等.层间应力差对水力裂缝扩展影响的大尺度实验模拟与分析[J].石油钻采工艺,2014,36(4):88-92.]
[11]Shao Xianjie,Dong Xinxiu,Tang Dazhen,et al.Treatment technology and method of low-to-moderate production coalbed methane wells in Hancheng mining area[J].Natural Gas Geoscience,2014,25(3):435-443.[邵先杰,董新秀,汤达祯,等.韩城矿区煤层气中低产井治理技术与方法[J].天然气地球科学,2014,25(3):435-443.]
[12]Fan Yao,Ru Ting,Li Bingang,et al.Fracturing fluid experiment for coalbed methane wells of Jurassic coal in Jiaoping block[J].Coal Geology & Exploration,2014,42(3):40-42.[范耀,茹婷,李彬刚,等.焦坪矿区侏罗纪煤层地面煤层气井压裂液优选实验[J].煤田地质与勘探,2014,42(3):40-42.]
[13]Cong Lianjun,Liang Li,Lu Yongjun,et al.The action of chlorinated potassium in CBM well fracturing operation[J].Coal Geology & Exploration,2001,29(2):24-27.[丛连铸,梁利,卢拥军,等.氯化钾在煤层气井压裂中的作用[J].煤田地质与勘探,2001,29(2):24-27.]
[14]Wang Subing.Riverfrac treatment[J].Natural Gas Exploration & Development,2005,28(4):39-42.[王素兵.清水压裂工艺技术综述[J].天然气勘探与开发,2005,28(4):39-42.]
[15]Wu Fubing.The application of the indirect fracturing technology in development of Fuxin coalbed methane[J].Inner Mongolia petrochemical industry,2009,(12):114-115.[吴辅兵.间接压裂技术在阜新煤层气开发中的应用[J].内蒙古石油化工,2009,(12):114-115.]
[16]Weng Dingwei,Zhang Qihan,Lu Yongjun,et al.Study and application on improving hydraulic fracture complexity in sandstone reservoir[J].Natural Gas Geoscience,2014,25(7):1085-1089.[翁定为,张启汉,卢拥军,等.提高砂岩储层人工裂缝复杂度的压裂技术及其应用[J].天然气地球科学,2014,25(7):1085-1089.]
/
〈 |
|
〉 |