The Sulfate Reduction Effect on Water Chemical Compositionsin Methane Seeping Environment
Received date: 2015-05-02
Revised date: 2015-06-17
Online published: 2015-12-10
Sulfate reduction is induced by the sulfate-reducing bacteria (SRB),and it is widely distributed in methane seeps in marine environment.Sulfate reduction plays an important role in controlling the methane seeps whilst it couples to anaerobic oxidation of methane.Therefore,it is of great significance to research the sulfate reduction to discuss methane transfer and transformation in submarine sediment.To study the impact of biogeochemical reactions on the hydrochemical compositions and environment,high-pressure reactor kettle acts as an SRB carrier,and it has inoculated SRB with the methane environment under low-temperature and high-pressure.The results revealed that the Oxidation Reduction Potential value has decreased from -107.5mV to -181.5mV in the reactor.Both the concentrations of HCO3- and HS- have decreased with time growth,and the former concentration was 2 orders of magnitude larger than the latter.The concentration of Fe2+ increased to some extent,but Ca2+ reduced from 2.40mg/L to 0.04 mg/L.There were many carbonate and sulfide minerals detected by the SEM,and the components of precipitations were Fe,Ca,Mg and Mn analyzed by EDS.It can be concluded that sulfate reduction and the corresponding geochemical reaction control the changes of ion components in this system.The experiment results have certain significance for understanding the biogeochemical reactions and carbon-sulfur cycle in submarine sediment.
WEI Ming-cong,XU Tian-fu,LIU Xiao,JIN Guang-rong,CAO Yu-qing,LIU Na . The Sulfate Reduction Effect on Water Chemical Compositionsin Methane Seeping Environment[J]. Natural Gas Geoscience, 2015 , 26(12) : 2372 -2380 . DOI: 10.11764/j.issn.1672-1926.2015.12.2372
[1]Berner R A.A new geochemical classification of sedimentary environments[J].Journal of Sedimentary Research,1981,51(2):359-365.
[2]Reeburgh W S.Methane consumption in Cariaco Trench waters and sediments[J].Earth and Planetary Science Letters,1976,28(3):337-344.
[3]Hoehler T M,Alperin M J,Albert D B,et al.Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J].Global Biogeochemical Cycles,1994,8(4):451-463.
[4]Valentine D L,Reeburgh W S.New perspectives on anaerobic methane oxidation[J].Environmental Microbiology,2000,2(5):477-484.
[5]Boetius A,Ravenschlag K,Schubert C J,et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,2000,407(6804):623-626.
[6]Schink B.Energetics of syntrophic cooperation in methanogenic degradation[J].Microbiology and Molecular Biology Reviews,1997,61(2):262-280.
[7]Rodriguez N M,Paull C K,Borowski W S.Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake ridge:Offshore southeasten north america1[C]//Proceedings of the Ocean Drilling Program.Scientific Results.Ocean Drilling Program,2000,164:301-312.
[8]Luan Xiwu.Sulfate-methane interface:The upper boundary of gas hydrate zone[J].Marine Geology & Quaternary Geology,2009,29(2):91-102.[栾锡武.天然气水合物的上界面—硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质,2009,29(2):91-102.]
[9]Reeburgh W S.Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107(2):486-513.
[10]Froelich P N,Klinkhammer G P,Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979,43(7):1075-1090.
[11]Liu Xiaoping,Yang Xiaolan.Progress of geochemical prospecting methods of marine gas hydrate[J].Natural Gas Geoscience,2007,18(2):312-316.[刘小平,杨晓兰.海底天然气水合物地球化学方法勘探进展[J].天然气地球科学,2007,18(2):312-316.]
[12]Shen Lidong,Hu Baolan,Zheng Ping.Progress in study on microorganisms responsible for anaerobic oxidation of methane[J].Acta Pedologica Sinica,2011,48(3):619-628.[沈李东,胡宝兰,郑平.甲烷厌氧氧化微生物的研究进展[J].土壤学报,2011,48(3):619-628.]
[13]Orphan V J,House C H,Hinrichs K U,et al.Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001,293(5529):484-487.
[14]Orphan V J,House C H,Hinrichs K U,et al.Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J].Proceedings of the National Academy of Sciences,2002,99(11):7663-7668.
[15]Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annual Review of Microbiology,2009,63:311-334.
[16]Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresource Technology,2010,101(9):3132-3138.
[17]Xi Jingru,Liu Suqin,Li Lin,et al.Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation[J].Environment Science,2014,35(12):28.[席婧茹,刘素琴,李琳,等.硫酸盐还原型甲烷厌氧氧化菌群驯化及其群落特征[J].环境科学,2014,35(12):28.]
[18]Postgate J R.The Sulphate-Reducing Bacteria[M].Cambridge:CUP Archive,1979.
[19]Lu Hongfeng,Sun Xiaoming,Zhang Mei.Nature Gas Hydrate Sediment Mineralogy and Geochemistry in the South China Sea[M].Beijing:Science Press,2011.[陆红峰,孙晓明,张美.南海天然气水合物沉积物矿物学和地球化学[M].北京:科学出版社,2011.]
[20]Liu B,Yuan Q,Su K H,et al.Experimental simulation of the exploitation of natural gas hydrate[J].Energies,2012,5(2):466-493.
[21]Sloan Jr E D,Koh C.Clathrate Hydrates of Natural Gases[M].Florida:CRC Press,2007.
[22]Ma Fang,Ren Nanqi,Yang Jixian,et al.The Experiment of Pollution Controll Microbiology[M].Haerbin:Harbin Institute of Technology Press,2002.[马放,任南琪,杨基先,等.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002.]
[23]Widdel F,Bak F.Gram-negative mesophilic sulfate-reducing bacteria[M].The prokaryotes.Springer New York,1992:3352-3378.
[24]Zhang Xiaoli,Liu Haihong,Chen Kaixun,et al.The study of growing regulation of sulfate-reducing bacteria[J].Journal of Northwest University:Natural Science Edition,1999,29(5):397-402.[张小里,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报:自然科学版,1999,29(5):397-402.]
[25]Jiao Di,Li Jin,Li Juan,et al.Isolation and growth characteristics of sulfate-reducing bacteria stains in reclaimed Water[J].Environmental Science & Technology,2010,33(10):64-67.[焦迪,李进,李娟,等.硫酸盐还原菌在中水中的分离及生长特性研究[J].环境科学与技术,2010,33(10):64-67.]
[26]Gui Guan.Experimental Study on Desulfotomaculum Cultivation and Sulfate Reduction[D].Wuhan:Wuhan University of Technology,2013.[桂冠.脱硫肠状菌的培养及还原硫酸盐的试验研究[D].武汉:武汉理工大学,2013.]
[27]Qiu R L,Zhao B L,Liu J L,et al.Sulfate reduction and copper precipitation by a Citrobacter sp.isolated from a mining area[J].Journal of Hazard Materials,2008,39(9):6-11.
[28]Hunter K S,Wang Y,Van Cappellen P.Kinetic modeling of microbially-driven redox chemistry of subsurface environments:Coupling transport,microbial metabolism and geochemistry[J].Journal of Hydrology,1998,209(1):53-80.
[29]Yao Yunbin.Physics and Chemistry Manuals[M].Shanghai:Shanghai Science and Technology Press,1985.[姚允斌.物理学和化学手册[M].上海:上海科学技术出版社,1985.]
[30]Von Wolzogen Kukr C A.Van Vlugt L S.De Grafiteering van gietijzerals[J].Electrobiochimich Process Manscrobe Gronden Water,Corrosion,1984,18(6):147-165.
[31]Cao J,Zhang G,Mao Z S,et al.Influence of electron donors on the growth and activity of sulfate-reducing bacteria[J].International Journal of Mineral Processing,2012,2(106):58-64.
[32]Peck H D,Van Beeumen J,LeGall J.Biochemistry of dissimilatory sulphate reduction[and discussion][J].Philosophical Transactions of the Royal Society of London.B,Biological Sciences,1982,298(1093):443-466.
[33]Odom J M,Singleton R.TheSulfate-Reducing Bacteria:Contemporary Perspectives[M].New York:Springer-Verlag,1993.
[34]Zhu Erqin,Wang Qi.Marine Authigenic Mineral[M].Beijing:China Ocean Press,1988.[朱而勤,王琦.海洋自生矿物[M].北京:海洋出版社,1988.]
[35]Chapelle,F H.Ground-Water Microbiology and Geochemistry[M].New York:Wiley,993.
/
〈 |
|
〉 |