The Numerical Simulation Study of Basal Water Condensate Gas Reservoir in Gas-Water Transition Zone:An Example from TⅡ2 Condensate Gas Reservoir in Jilake Gasfield

Expand
  • 1.Exploration and Development Research Institute,PetroChina Tarim Oilfield Company,Korla 841000,China| 2.Southwest Petroleum University,Chengdu 610500,China| 3.PetroChina Tarim Oilfield Company,Korla 841000,China)

Received date: 2013-12-11

  Revised date: 2014-05-22

  Online published: 2019-09-20

Abstract

The TⅡ2 basal water condensate gas reservoir in Jilake Gasfield has some characters,i.e.,low amplitude of structure,severe heterogeneity,low resistivity gas horizon in the top of gas reservoir,complex gas-water distribution.Combined with the geology setting and production performance of the gas reservoir,mercury penetration data were classified and handled to calculate the height of gas-water transitional zone,and it is concluded that it is a basal water condensate gas reservoir in gas-water transitional zone.Capillary pressure method was used to establish initial water saturation and to simulate gas reservoir.Two methods were used to delicately simulate gas wells which are producing water.Some wells with low and sustained producing water which were mainly affected by movable water were preferably simulated by considering saturation procedure for relative permeability curve.Some wells which were mainly affected by basal water were finely simulated by LGR to accurately describe retrograde condensation and bottom water coning in near wellbore.The findings indicate that these methods take advantage of simulating complex condensate gas reservoir,so these methods can be applied to other gas reservoirs.

Cite this article

LI Shi-chuan, HUANG Zhao-ting, JIANG Tong-wen, NIU Yu, YANG Jian-ping, CHENG Rong-hong, XIE Wei, WANG Bin . The Numerical Simulation Study of Basal Water Condensate Gas Reservoir in Gas-Water Transition Zone:An Example from TⅡ2 Condensate Gas Reservoir in Jilake Gasfield[J]. Natural Gas Geoscience, 2014 , 25(11) : 1855 -1860 . DOI: 10.11764/j.issn.1672-1926.2014.11.1855

References

[1]Wei Yunsheng,Shao Hui,Jia Ailin,et al.Gas water distribution model and control factors in low permeability high water saturation sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):822-826.[位云生,邵辉,贾爱林,等.低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J].天然气地球科学,2009,20(5):822-826.]
[2]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-181.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-181.]
[3]Hao Guoli,Liu Guangdi,Xie Zengye,et al.Gas-water distributed pattern in Xujiahe Formation tight gas sandstone reservoir and influential factor in central Sichuan Basin[J].Natural Gas Geoscience,2010,21(3):427-434.[郝国丽,柳广弟,谢增业,等.川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J].天然气地球科学,2010,21(3):427-434.]
[4]Zhao Jun,Song Fan.Genetic analysis and evaluation of low resistivity oil formation in Tarim Basin[J].Petroleum Exploration and Development,2004,31(6):69-71.[赵军,宋帆.塔里木盆地低电阻率油层成因分析与评价[J].石油勘探与开发,2004,31(6):69-71.]
[5]Mao Zhiqiang,Gong Fuhua,Liu Changyu,et al.Experimental study on the gensis of low resistivity pay zone in north region of Tarim Basin[J].Well Logging Technology,1999,23(4):243-248.[毛志强,龚富华,刘昌玉,等.塔里木盆地油气层低阻成因实验研究[J].测井技术,1999,23(4):243-248.]
[6]You Yuchun,Liu Weixing,Tan Zhenhua,et al.Genesis of low-resistivity reservoirs in Qintong Sag,Subei Basin[J].Natural Gas Geoscience,2009,20(6):941-944.[游瑜春,刘伟兴,谭振华,等.苏北盆地溱潼凹陷低阻油气层成因研究[J].天然气地球科学,2009,20(6):941-944.]
[7]Yu Qixiang,Lu Qinghua,Zhu Yonghui.Characteristics and genesis of low resistivity gas reservoir of Cretaceous-Tertiary in southern Tianshan area[J].Natural Gas Geoscience,2011,22(1):108-114.[余琪祥,路清华,朱永辉.天山南区块白垩系—第三系低阻气层特征及成因分析[J].天然气地球科学,2011,22(1):108-114.]
[8]Li Yong,Li Baozhu,Hu Yongle,et al.Water production analysis and reservoir simulation of the Jilake condensate gas field[J].Petroleum Exploration and Development,2010,37(1):89-93.
[李勇,李保柱,胡永乐,等.吉拉克凝析气田单井产水分析及数值模拟[J].石油勘探与开发,2010,37(1):89-93.]
[9]Ran Xinquan,He Jiangchuan.Reservoir Engineering Handbook[M].Beijing:Petroleum Industry Press,2002.[冉新权,何江川.油藏工程手册[M].北京:石油工业出版社,2002.]
[10]Zhang Houhe,Qin Ruibao.Applied Capillary Pressure Curves to Calculate Original Water Saturation Distribution in Triassic Gas Reservoir  in Jilake Oilfield[M].Beijing:Petroleum Industry Press,1992.[张厚和,秦瑞宝.利用毛管压力曲线研究吉拉克气田三叠系凝析气藏含水饱和度之分布[M].北京:石油工业出版社,1992.]
[11]Chen Fuli,Jin Yong,Zhang Shupin,et al.NMR T2 distribution method for evaluating fluid saturation of original hydrocarbon reservoirs:A case form complex gas reservoirs in deep zone volcanics Daqing[J].Natural Gas Geoscience,2007,18(3):412-417.[陈福利,金勇,张淑品,等.用核磁T2谱法评价原始气藏流体饱和度——以大庆深层火山岩复杂气藏为例[J].天然气地球科学,2007,18(3):412-417.]
[12]Li Aifen,Zhang Zhiying,Cui Chuanzhi,et al.Fundamentals of  Petrophysics[M].Dongying:China University of Petroleum Press,2011.[李爱芬,张志英,崔传智,等.油层物理学[M].东营:中国石油大学出版社,2011.]
[13]Zhang Liehui,Feng Peizhen,Liu Yueping,et al.Ration distribution of oil and gas in the process of single well gas-injection[J].Journal of Southwest Petroleum Institute,2000,22(4):52-55.[张烈辉,冯佩真,刘月萍,等.单井注气吞吐过程中油气饱和度分布研究[J].西南石油学院学报,2000,22(4):52-55.]
[14]Sheng Ruyan.Experimental study on residual gas saturation of water-flooded sandstone gas reservoirs[J].Journal of Oil and Gas Technology,2010,32(4):105-107.[JP3][生如岩.水驱砂岩气藏残余气饱和度试验研究[J].石油天然气学报,2010,32(4):105-107.]
[15]Li Shilun,Wang Minghua,He Jiangchuan,et al.Development of Gas Field and Gas Condensate  Field[M].Beijing:Petroleum Industry Press,2004.[李世伦,王鸣华,何江川,等.气田与凝析气田开发[M].北京:石油工业出版社,2004.]
[16]Killough J E.Reservoir simulation with history dependent saturation function[J].Society of Petroleum Engineers Journal,1976,16(2):37-48.
[17]Li Yun.Reservoir Simulation[M].Dongying:China University of Petroleum Press,1998.[李允.油藏模拟[M].东营:石油大学出版社,1998.]
[18]Zhang Feng,Wang Zhensheng,Cheng Yan,et al.Processing methods for relative permeability curves in reservoir numerical simulation[J].Natural Gas Geoscience,2010,21(5):859-862.[张枫,王振升,程岩,等.油藏数值模拟中油水相对渗透率曲线处理方法[J].天然气地球科学,2010,21(5):859-862.]
[19]Zhou Qi,Zhu Xueqian,Liu Chuanxi.The curve and processing of capillary pressure hysteresis and relative permeability hysteresis [J].Oil and Gas Recovery Technology,1999,6(3):47-50.[周琦,朱学谦,刘传喜.毛细管力滞后曲线和相渗透率滞后曲线及处理[J].油气采收率技术,1999,6(3):47-50.]
[20]Liu Guangtian,Li Baozhen.Local grid coarsening and refinement technique in the numerical simulation of large bottom water reservoirs[J].Science Technology and Engineering,2012,13(12):3207-3210.[刘广天,李保振.局部网格粗化与加密技术在大底水油藏数值模拟中的应用[J].科学技术与工程,2012,13(12):3207-3210.][HJ1.5mm]

Outlines

/