Micro-pores Structure Characteristics and Development Control Factors  of Shale Gas Reservoir:A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou

Expand
  • 1.SINOPEC Exploration Southern Company,Chengdu 610041,China;
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
    Southwest Petroleum University,Chengdu 610500,China;
    3.Zhejiang Oilfield Company of PetroChina,Hangzhou 310023,China

Received date: 2013-03-20

  Revised date: 2013-05-07

  Online published: 2013-10-10

Abstract

It is suggested that reservoir spaces of Longmaxi shale gas reservoir in XX area of southern Sichuan and northern Guizhou were diversified,by using of Scanning Electron Microscope (SEM),test data and adsorption/desorption isothermal that produced from Multipoint Brunauer Emmett Teller (MBET) to do research on the types of reservoir spaces and micro-pore structure characteristics of shale gas reservoir.Reservoir spaces mainly include residual primary intergranular pores,intercrystal pores,mineral moldic pores,secondary dissolution pores,micropores among clay minerals,organic matter pores,structural fractures,diagenetic shrink micro-fractures,interlayer lamellation fractures,overpressure breaking fractures and so on.We found out that the pore volume and specific surface area of Longmaxi mud shale is larger and has a good positive correlation,and thought that the more developed the micro-pores were,the bigger the mud shale have the pore volume and specific surface area.It is also beneficial for mud shale to adsorb shale gas.This study established pore models of mud shale,and analyzed micro-pore structure of Longmaxi Formation mud shale.Using adsorption/desorption isothermal,this study also proposed Longmaxi Formation mud shale mainly developed micro-pores,and argued that in those micro-pores,flask (ink-bottle) shaped pores and open air permeability pores supplied the largest pore volume and specific surface area for mud shale.We thought that organic carbon content (TOC),the content of illite/smectite interstratified clay mineral and thermal evolution degree were the major factors to control micro-pores structure of Longmaxi Formation shale gas reservoir in XX area of southern Sichuan and northern Guizhou.
 

Cite this article

WEI Xiang-feng,LIU Ruo-bing,ZHANG Ting-shan,LIANG Xing . Micro-pores Structure Characteristics and Development Control Factors  of Shale Gas Reservoir:A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou[J]. Natural Gas Geoscience, 2013 , 24(5) : 1048 -1059 . DOI: 10.11764/j.issn.1672-1926.2013.05.1048

References

 [1] Schettler Jr P D,Parmely C R,Juniata C.Contributions to Total Storage Capacity in Devonian Shales[C].SPE 23422,1991:77-88.

 [2] Bowker K A.Recent development of the Barnett Shale play,Fort Worth Basin:West Texas[J].Geological Society Bulletin,2003,42(6):1-11.

 [3] Montgomery S L,Jarvie D M,Bowker K A,et al.Missiissippian Barnett shale,Fort Worth Basin,north-central Texas:Gas-shale play with Multitrillion Cubic Foot Potential[J].AAPG Bulletin,2005,89(2):155-175.

 [4] Bowker  K A.Recent developments of the Barnett shale play,Fort Worth Basin[J].West Texas Geological Society Bulletin,2005,42(6):4-11.

 [5] Curtis J B.Fractured shale-gas systems[J].AAPG Bulletion,2002,86(11):1921-1938.

 [6] Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions of formation and accumulation for shale gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.]

 [7] Wang Feiyu,He Zhiyong,Meng Xiaohui,et al.Occurrence of shale gas and prediction of original gas In-place(OGIP) [J].Natural Gas Geoscience,2011,22(3):501-510.[王飞宇,贺志勇,孟晓辉,等.页岩气赋存形式和初始原地气量( OGIP) 预测技术[J].天然气地球科学,2011,22(3):501-510.]

 [8] Ambrose Ray J,Hartman Robert C,Diaz-Campos Mery,et al.New Pore-scale Considerations for Shale Gas in Place Calculations[C].SPE 131772,2010:1-17.

 [9] Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.]

[10] Bustin R M,Bustin A M M,Cui X,et al.Impact of Shale Properties on Pore Structure and Storage Characteristics[C].SPE 119892,2008.

[11] Ji Liming,Qiu Junli,Xia Yanqing,et al.Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J].Acta Petrolei Sinica,2012,33(2):249-256.[吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.]

[12] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.

[13] Du Yu′e.The Affect about Pore Characteristics of Coal to the Coal-bed Methane Desorption[D].Xi′an:Xi′an University of Science and Technology,2010.[杜玉娥.煤的孔隙特征对煤层气解吸的影响[D].西安:西安科技大学,2010.]

[14] Kang S M,Fathi E,Ambrose R J,et al.Carbon Dioxide Storage Capacity of Organic-rich Shales[C].SPE 134583,2010:1-17.

[15] Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian Mississippian strata in the western Canada sedimentary basin:Application of an integrated formation evalution[J].AAPG Bulletin,2008,92(1):87-125.

[16] Zhao Xingyuan,Zhang Youyu.Clay Minerals and Analsis of Clay Minerals[M].Beijing:Ocean Press,1990:43-44.[赵杏媛,张有瑜.黏土矿物与黏土矿物分析[M].北京:海洋出版社,1990:43-44.]

[17] Passey Q R,Bohacs K M,Esch W L,et al.From Oil-prone Source Rock to Gas-producing Shale Reservoir:Geologic and Petrophysical Characterization of Uniconventional Shale-gas Reservoirs[C].SPE 131350,2010.

[18] Hoffman J,Hower J.Clay mineral assemblages as low grade metamorphic geothermometers application to the thrust faulted disturbed belt of Montana\[M\]//Scholle P A,Schluger P S.eds.Aspects of Diagenesis,Society of Economic Paleontologists and Mineralogists Special Publication,1979,26:55-80.[JP]

[19] Nadeau PH,Reynolds Jr R C.Burial and contact metamorphism in the Mancos shale[J].Clays and Clay Minerals,1981,29:249-259.

[20] Arkai P.Chlorite crystallinity:an empirical approach and correlation with illite crystallinity,coal rank andmineral facies as exemplified by Palaeozoic and Mesozoic rocks of north east Hungary[J].Jour Metamorphic Geol,1991,9:23-734.

[21] Zhao Mengwei.The indicators and boundary for separating diagenesis from burial metamorphism[J].Gological Review,1995,41(3):238-244.[赵孟为.划分成岩作用与埋藏变质作用的指标及其界线[J].地质论评,1995,41(3):238-244.]

[22] Ji J F,Browne P R L.Relationship between illite crystallinity and temperature in active geothermal system of New Zealand[J].Clays and Clay Minerals,2000,48(1):139-144.

[23] Xiao Lihua,Meng Yuanlin,Niu Jiayu,et al.Diagenetic history and diagenetic stages′prediction of Shahejie Formation in the Qikou Sag[J].Chinese Journal of Geology,2005,40(3):346-362.[肖丽华,孟元林,牛嘉玉,等.歧口凹陷沙河街组成岩史分析和成岩阶段预测[J].地质科学,2005,40(3):346-362.]

[24] Liu Weixin,Wang Yanbin,Qin Jianzhong,et al.Characteristics of the Triassic clay minerals in Aba area,Northern Sichuan,and its geological implications[J].Chinese Journal of Geology,2007,42(3):469-482.[刘伟新,王延斌,秦建中.川北阿坝地区三叠系黏土矿物特征及地质意义[J].地质科学,2007,42(3):469-482.]



 
Outlines

/