Comparison of Experimental Adsorption between Shale Gas and Coalbed Gas

Expand
  • Coalbed Methane Research Center of China University of Petroleum (Beijing), Engineering Research Center of the Ministry of Education for Gas Energy Development and Utilization in China University of Petroleum (Beijing), Beijing 102249, China

Received date: 2012-06-18

  Revised date: 2012-10-19

  Online published: 2013-02-10

Abstract

Based on coalbed methane adsorption,CBM is successfully developed.it is great effect on shale gas exploration to comparatively analysis of coal bed methane and shale gas adsorption.It is subjected to the isothermal adsorption experiment with different temperatures to describe adsorption characteristics between varioues TOC and thermal maturity shale and different rank coal.The results shows that the adsorption quantity of methane on shale and coal decrease with temperature increase,but it is more sensitive for gas shale adsorption to temperature than that for coal. PL value in coal is negatively correlated with RO and positive with organic matter content, VL value in coal is positive correlated with Ro and negative with matter content;in constrast, PL and VL of shale decrease with RO and increase with organic matter content.Methane adsorption quantity for coal is more than that for shale.It is more noticeable effect on CBM production by means of pressure step-down desorption than that on gas shale development. 

Cite this article

ZHAO Jin, ZHANG Sui-an, CAO Li-hu . Comparison of Experimental Adsorption between Shale Gas and Coalbed Gas[J]. Natural Gas Geoscience, 2013 , 24(1) : 176 -181 . DOI: 10.11764/j.issn.1672-1926.2013.01.176

References

[1]Zhang Suian,Ye Jianping,Tang Shuheng,et al.Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility experimental study[J].Natural Gas Industry,2005,25(1):44-46.[张遂安,叶建平,唐书恒,等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.]

[2]Ma Dongmin,Zhang Suian.Analysis and application of CBM desorption characteristics at rising temperature[J].China Coalbed Methan,2011,8(3):11-15.[马东明,张遂安.煤层气升温解吸特征分析与应用[J].中国煤层气,2011,8(3):11-15.]

[3]Xu Shilin,Bao Shujing.Preliminary analysis of shale gas resource potential and favorable areas in Ordos basin[J].Natural Gas Geoscience,2009,20(3):460-466.[徐世林,包书景.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J].天然气地球科学,2009,20(3):460-466.]

[4]Ma Dongmin,Zhang Suian,Wang Penggang,et al.Mechanism of coalbed methane desorption at different temperatures[J].Coal Geology & Exploration,2011,39(1):20-24.[马东明,张遂安,王鹏刚,等.煤层气解吸的温度效应[J].煤田地质与勘探,2011,39(1):20-24.]

[5]Ma Dongmin,Zhang Suian,Lin Yabing.Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J].Journal of China Coal Society,2011,36(3):476-480.[马东明,张遂安,蔺亚兵.煤的等温吸附—解吸实验及精确拟合[J].煤炭学报,2011,36(3):476-480.]

[6]Zhao Jin,Zhang Suian,Ma Dongmin,et al.Numerical simulator study for carbon dioxide injection ECBM recovery[J].Nature Gas and Oil,2012,6(1):67-70.[赵金,张遂安,马东明,等.注二氧化碳提高煤层气采收率数值模拟[J].天然气与石油,2012,6(1):67-70.]

[7]Tongwei Zhang,Geoffrey S Ellis,Stephen C Ruppel,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.

[8]Cavenati S,Grande C A,Rodrigues A E.Adsorption equilibrium of methane,carbon dioxide and nitrogen on zeolite 13X at high pressures[J].Journal of Chemical Engineering Data,2004,(49):1095-1101.

[9]Cui X,Bustin A.M,Bustin R.Measurements of gas permeability anddiffusivity of tight reservoir rocks:different approaches and their applications[J].Geofluids,2009,(9):208-223.[10]Himeno S,Komatsu T,Fujita S.High-pressure adsorption equilibria ofmethane and carbon dioxide on several activated carbons[J].Journal of Chemical Engineering Data,2005,(50):369-376.

[11]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,(79):848-861.

[12]Lu X C,Li  F C,Watson  A.T.Adsorption measurements in Devonian shales[J].Fuel,1995,74:599-603.

[13]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26:916-927.

[14]Rowe H D,Loucks R G,Ruppel S C,et al.Mississippian Barnett Formation,Fort Worth basin,Texas:Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J].Chemical Geology,2008,257:16-25.

[15]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural Studies of Gas Shales[C].Society of Petroleum Engineers,Paper,SPE 131771,2010.

[16]Strapoc D,Mastalerz M,Schimmelmann,et al.Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian),eastern Illinois basin[J].American Association of Petroleum Geologists Bulletin,2010,94:1713-1740.

[17]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-531.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-531.]

[18]Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions of formation and accumulation for shale gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.]

Outlines

/