Quantitative Calculation of Reservoir Properties and Gas Saturation in Oolitic Dolostone, Puguang Gasfield

Expand
  • Exploration Division, China Petroleum and Chemical Corp., Beijing 100029, China

Received date: 2008-04-25

  Revised date: 2008-08-05

  Online published: 2008-04-20

Abstract

Oolitic dolostone is a vital type of carbonate reservoirs. The quantitative calculation and prediction of the reservoir permeability and gas saturation provide an important foundation for the further development of the reservoir, which could determine productivity and select the optimum exploitation layers in the dolostone. The general permeability model links geology and reservoir properties via rock number λ, which varies regularly within a depositional cycle. By using λ, the permeabilities and their changing trend can be indicated within a high-resolution depositional framework. The cementation index m, an important parameter in calculating gas saturation by Archie formula, varies with the pore type in the dolostone. The permeability profile resulted from the permeability model by using the primary water saturation, porosity from thin sections, cores, debris, and well logging data; and the gas-saturation profile from the Archie formula combining with the values of m and formation-water resistivities in the oolitic reservoir, both of them act as the basis for optimizing development program of the gas reservoir in the dolostone after it was discovered.

Cite this article

MA Yong-Sheng . Quantitative Calculation of Reservoir Properties and Gas Saturation in Oolitic Dolostone, Puguang Gasfield[J]. Natural Gas Geoscience, 2008 , 19(4) : 437 -443 . DOI: 10.11764/j.issn.1672-1926.2008.04.437

References

[1]Focke J W, Munn D. Cementation exponents in Middle Eastern carbonate reservoirs[R]. SPE 13735, 1987:155-167.
[2]Byrnes A P, Franseen E K, Watney W L, et al. The role of moldic porosity in paleozoic Kansas reservoirs and the association of original depositional facies and early diagenesis with reservoir properties[EB/OL]. http://www.kgs.ku.edu/PRS/publication/2003/ofr2003-32/index.html,2003.
[3] 李仲东,周文.川东三叠系飞四段滩相鲕粒灰岩储层[J]. 成都理工大学学报:自然科学版, 2005,32(2):126-128.
[4]马永生,郭旭升,郭彤楼,等. 四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,25(4):476-480.
[5]马永生,牟传龙,郭彤楼,等.四川盆地东北部飞仙关组层序地层与储层分布[J].矿物岩石,2005,25(4):73-79.
[6]马永生,牟传龙,谭钦银,等. 达县-宣汉地区长兴组-飞仙关组礁滩相特征及其对储层的制约[J]. 地学前缘,2007,14(1):182-192.
[7] 马永生,蔡勋育. 四川盆地川东北区二叠系-三叠系天然气勘探成果与前景展望[J].石油与天然气地质,2006,27(6):741-750.
[8]马永生.普光气田天然气地球化学特征及气源探讨[J].天然气地球科学,2008,19(1):1-7.
[9]Amthor J A,Friedman G M. Early-to-late-diagenetic dolomitization of platform carbonates: Lower Ordovician Ellenburger Group, Permian Basin, West Texas[J].Journal of Sedimentay Petrology, 1992, 62 (1):131-144.
[10]Borkhataria R, Aigner T, Pppelreiter, et al. Characterisation of epeiric "layer-cake" carbonate reservoirs : Upper Muschelkalk (Middle Triassic), the Netherlands[J]. Journal of Petroleum Geology, 2005, 28(2):119-146.
[11]Schauer M, Aigner T, Tübingen. Cycle stacking pattern, diagenesis and reservoir geology of peritidal dolostones, trigonodus-dolomite, Upper Muschelkalk (Middle Triassic, SW-Germany)[J].Facies,1997,37(1): 99-114.
[12]Eichenseer H T, Walgenwitz F R, Biondi P J. Stratigraphic control on facies and diagenesis of dolomitized oolitic siliciclastic ramp sequences (Pinda Group, Albian, Offshore Angola)[J]. AAPG Bulletin, 1999, 83 (11):1729-1758.
[13]James W,Jennings J,Lucia F J. Predicting Permeability from Well Logs in Carbonates with a Link to Geology for Interwell Permeability Mapping[R].SPE 71336, 2001:1-16.
[14] Kostic B, Aigner T. Sedimentary and poroperm anatomy of shoal-water carbonates (Muschelkalk, South-German Basin): an outcrop-analogue study of inter-well spacing scale[J]. Facies,2004,50(1):113-131.
[15]储昭宏,马永生,林畅松. 碳酸盐岩岩储层渗透率预测[J]. 地质科技情报,2006,25(4):28-32.
[16]Lucia F J, Conti R D. Rock Fabric, Permeability, and Log Relationships in an Upward-Shoaling, Vuggy Carbonate Sequence[R]. Geological Circular 87-5, 1987.
[17]Wang F P, Lucia F J. Comparison of Empirical Models for Calculating the Vuggy Porosity and Cementation Exponent of Carbonates from Log Responses[R]. Geological Circular 93-4, 1993.
[18]Mendelson K S,Cohen M H. The effect of grain anisotropy on the electrical properties of sedimentary rocks[J]. Geophysics, 1982, 47(2):257-263.
[19]Archie G E. Electrical resistivity as an aid in core analysis interpretation[J]. AAPG Bulletion, 1947, 31(3):50-66.
[20]Archie G E. Classification of carbonate reservoir rocks and petrophysical considerations[J]. AAPG Bulletin, 1952, 36(2):78-98.

Outlines

/