MULTI-AZIMUTHAL AVO ANALYSIS OF FRACTURED RESERVOIRS

Expand
  • (1.School of Earth and Space Sciences, Peking University, Beijing 100871,China;2.The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education,Peking University, Beijing 100871,China;3.The Research Center of Oil and Gas, Peking University, Beijing 100871,China)

Received date: 2007-06-07

  Revised date: 2007-10-09

  Online published: 2008-06-20

Abstract

It is important to predict a favorable fractured reservoir and its main azimuth of fractures during the exploration and exploitation of petroleum. When fractures occur in the reservoir, a nature interface can be formed by the huge difference of physical properties between fluids and compacted rocks, and it changes the characteristics of seismic reflection waves of the reservoir. These are the important information of the fractures existence in the seismic sections. AVO can detect fractures in formation, especially those distributed in certain orientation under structural stress. Theoretically, the influence of fractures to seismic attributes may reach maximum in its dip direction, and may reach minimum in its strike direction. And the influence is the same to AVO parameters. Therefore, applying the multi\|azimuthal AVO method to fractured reservoirs and its vector difference analysis can determine the fracture intensity and density of the reservoirs. The authors discuss in detail various azimuthal AVO responses of fractured carbonate reservoirs to various incidence angles, azimuth and fracture dips through theoretical formula, and find the relation between the AVO characteristics of seismic wave and the fracture strike and dip, especially for the tilt fractures, which provides the foundation for the prediction of favorable fractured reservoirs. The theory is successfully applied to the analyzation of the favorable fractured zone of Tarim.

Cite this article

MO Wu-ling,WU Chao-dong, . MULTI-AZIMUTHAL AVO ANALYSIS OF FRACTURED RESERVOIRS[J]. Natural Gas Geoscience, 2007 , 18(6) : 813 -818 . DOI: 10.11764/j.issn.1672-1926.2007.06.813

References

 [1] 殷八斤.AVO技术的理论与实践[M].北京:石油工业出版社,1995.
[2]许多,李正文,甘其刚.AVO在复杂碳酸盐岩储层中的应用[J].天然气工业,2004,24(12):38-40.
[3]朱广生.地震资料储层预测方法[M].北京:石油工业出版社,1995:92-106.
[5]张立勤,彭苏萍,李国发,等.方位AVO技术检测储层各向异性的方法和实践[J].天然气工业,2005,25(10):38-40.
[4]陆孟基.地震勘探原理[M].北京:石油工业出版社,1993:340-360.
[6]朱海龙,李向阳译.运用正交地震测线P波时差的方位角变化检测裂缝[J].石油物探译丛,2000,2(1):17-26.
[7]莫午零,吴朝东.裂缝性储层AVO模型研究[J].天然气工业,2007,27(2):43-45.
[8]范国章,牟永光,金之钧.裂缝介质中地震波方位AVO特征分析[J].石油学报,2002,23(4):42-45.
[9]周新杜,张林炎,范昆.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然地球科学,2007,18(3):328-333.
[10]Gray D,Roberts G,Head K. Recent advances in determination of fracture strike and crack density from P-wave seismic data[J]. The Leading Edge,2002,21(3):280-285.
[11]Ruger A. Variation of P-wave reflectivity with offset and azimuth in the anisotropic media[C]// SEG Expanded Abstract,1996,66th Annual International Meeting,1810-1813.
[12]Ruger A,Tsvankin I. Using AVO for fracture detection: analytic basis and practical solution[J]. The Leading Edge,1997,16(10):1429-1434 .
[13]孙国强,郑建京,胡慧芳,等.关于压陷型沉降拗陷盆地——以柴达木盆地为例[J].天然地球科学,2004,15(4):395-400.
[14]栗维民,张考文,任红,等.三塘湖盆地构造应力场特征[J].新疆石油地质,2005,26(1):6-9.
[15]陈煦,倪联滨.三塘湖盆地马朗凹陷芦草沟组储层特征及裂缝分布规律[J].中国石油勘探,2007,2:15-20.
[16]Shuey R T. Amplification of the Zoeppritz's equations[J]. Geophysics,1985,50(4):609-614. [1] 杜世通.地震层序模型与地震资料的高分辨率处理[M]//勘探家(石油与天然气).油气勘探进展丛书.北京:石油工业出版社,1998:17-23.
[2] 王捷.油藏描述技术——勘探阶段[M].北京:石油工业出版社,1996.=
[3]高建虎, 雍学善.利用地震子波进行油气检测[J].天然气地球科学,2004,15(1):47-50.
[4]刘传虎,李卫忠.时频分析方法及在储层预测中的应用[J].石油地球物理勘探,1996,31(S1):11-20.
[5]刘兰锋,刘全新,雍学善,等.基于广义S 变换的低频瞬时能量谱油气检测技术[J].天然气地球科学,2005,16(2):238-241.
[6]高静怀,朱光明.地震资料处理中小波函数的选取研究[J].地球物理学报,1996,39(3):392-400.=
[7]王西文,刘全新,高静怀,等.地震资料在小波域的分频处理与重构[J].石油地球物理勘探, 2001,36(1):78-85.
[8]Gzreg Partyka,James Gridley. Interpretational application of spectral decomposition in reservoir characterization [J].The Leading Edge,1999:353-360.
[9]Greg Partyka,James Gridly. 频谱分解在油藏描述中的解释性应用[J].张忠伟等译.国外油气勘探,2000,12(1):94-101.

Outlines

/