Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin

Expand
  • (1. Department of Earthsciences, Nanjing University, Nanjing 210093, China; 2. Northwest Exploration production Company,SINOPEC,Urumqi 830011, China; 3. Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029,China)

Received date: 2008-01-11

  Revised date: 2008-04-08

  Online published: 2008-06-10

Abstract

The lower Paleozoic dolomite sequences are important petroleum reservoirs in the Tarim basin. After a long and complex diagenetic process, the secondary dissolution pores are the main reservoir spaces. The distribution of the micro\|porosities is wide and not uniform. The diverse\|dissolution between calcite and dolomite during the burial is considered as an important mechanism for the micro\|porosities reservoir system’s formation based on the observation of plenty of well thin sections and micro\|photos, as well as the EPMA data, and this process is constrained by the components and textures of dolomite despite the influence of fluids. Limestone bearing dolomite and calcitic dolomite are the main reservoir rocks with reference to the component of dolomite. However, not all the calcite can be dissolved during the burial process. The distribution type of the calcite in the dolomite has been used to subdivide the sucrosic dolomite into three types, including intercrystalline filling type, innercrystalline filling type and inter\|innercrystalline filling mixed type, and the intercrystalline filling sucrosic dolomite can form fine micro\|porosities during burial dissolution.

Cite this article

WANG Xiao-lin ;HU Wen-xuan ; ZHANG Jun-tao ;QIAN Yi-xiong, ZHU JING-quan ; WU Shi-qiang . Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin[J]. Natural Gas Geoscience, 2008 , 19(3) : 320 -326 . DOI: 10.11764/j.issn.1672-1926.2008.03.320

References

 1Zenger D H, Dunham J B, Ethington R I. Concepts and models of dolomitizationC//Spec Publ. Tulas: SEPM, 1980,28:320.

 2Murray R C. Origin of porosity in carbonate rocksJ. J Sediment Petrol, 1960, (30): 59-84.

 3Weyl P K. Porosity through dolomitization:conservation of mass requirementsJ. J Sediment  Petrol, 1960, (30): 85-90.

 4] 林会喜.济阳坳陷桩海地区下古生界白云岩储集空间形成机理[J.油气地质与采收率,2006, 15(3):5-7,11.

 5Schmoker J W, Halley R B. Carbonate porosity versus depth: a predictable relation for south FloridaJ. AAPG Bulletin, 1982, (66): 2561-2570.

 6Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitizationC// Spec Publ Purser B, Tucker M, Zenger D. Dolomites-A Volume in Honor of Dolomieu. International Association of Sedimentologists. Cambridge: Blackwell Scientific Publications, 1994: 325-341.

 7Arthur H Saller, Nuel Henderson. Distribution of Porosity and Permeability in Platform Dolomites:Insight from the Permian of West TexasJ. AAPG Bullein, 1998, (82): 1528-1550.

 8Ruzyla K, Friedman G M. Factors controlling porosity in dolomite reservoirs in the Ordovician Red River Formation,Cabin Creek field, MontanaM// Roehl P O, Choquette P W. Carbonate Petroleum Reservoirs. New York: Springer-Verlag, 1985: 39-69.

 9Bebout D G, Lucia F J, Hocott C R,et al. Characterization of the Grayburg reservoir,University Lands Dune field, Crane County, TexasM// University of Texas at Austin. Bureau of Economic Geology Report of Investigations 168, 1987: 104 .

10Major R P, Bebout D G, Lucia F J. Depositional facies and porosity distribution, Permian (Guadalupian) San Andres and Grayburg formations, P. J. W. D. M. field complex,Central Basin platform, west TexasM// Lomando A J, Harris P M. Giant oil and gas fields: a core workshop. SEPM Core Workshop 12. 1988: 615-648.

11Kerans C, Lucia F J, Senger R K. Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogsJ. AAPG Bulletin, 1994, (78): 181-216.

12Sun S Q. Dolomite reservoirs: porosity evolution and reservoir characteristicsJ. AAPG Bulletin, 1995, (79): 186-204.

13君文,陈洪德,伍新河.马郎凹陷芦草沟组储层特征及控制因素[J.地质找矿论丛,2006,21(2):125-128,146. 

14] 王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义[J].西安石油大学学报:自然科学版,2004,19(4):72-76.

15Warren J . Dolomite :Occurrence ,evolution and economically important associations J. Earth Science Review, 2000 , (52) : 1-81.

16] 顾家裕,朱筱敏,贾进华,.塔里木盆地沉积与储层[M.北京:石油工业出版,2003:185-204.

17] 王雷,史基安,王琪,.鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析[J.油气地质与采收率, 2005,12(4):10-13.

18] 金之钧,朱东亚,胡文瑄,.塔里木盆地热液活动地质地球化学特征及其对储层影响[J.地质学报,2006,80(2):245-253.

19] 杨宁,吕修祥,郑多明.塔里木盆地火成岩对碳酸盐岩储层的改造作用[J.西安石油大学学报:自然科学版,2005,20(4):1-4.

20] 陈文彬,杨平,张予杰,.南羌塘盆地扎仁古油藏白云岩储层特征及成因研究[J.沉积与特提斯地质,2006,26(2):42-46.

21] 杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下白云石溶解过程的实验模拟研究[J.沉积学报,1995,13(3):83-88.

22] 刘永福,殷军,张雄伟,.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.

23] 刘树根,马永生,黄文明,.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007,18(4):485-496.

24] 魏国齐,杨威,张林,.川东北飞仙关组鲕滩储层白云石化成因模式[J].天然气地球科学,2005,16(2):162-166.

25] 张军涛,胡文瑄,钱一雄,.塔里木盆地白云岩储层类型划分、测井模型及其应用[J.地质学报,2008:待刊.

26[KG*7/8]Landes K K. Porosity through dolomitizationJ. AAPG Bulletin, 1946, (30): 305-318.

27Murray R C. Origin of porosity in carbonate rocksJ. J Sediment Petrol, 1960, (30): 59-84.

 

28Halley R B, Schmoker J W.High porosity Cenozoic rocks of South Florida: progressive loss of porosity with depthJ. Am  Assoc Petrol Geol Bull, 1983, (67): 191-200.

29Purser B H, Brown A, Aissaoui D M. Nature, origins and porosity in dolomitesC// Spec Publ. Purser B, Tucker M, Zenger D. Dolomites. International Association of Sedimentologists. 1994:283-308.

30Amthor J E, Mountjoy E W, Machel H G. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups; implications for reservoir development and prediction in carbonatesJ. Am Assoc Petrol Geol Bull, 1994: (78) ,1541-1559.

31] 朱井泉,吴仕强,王国学.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J.地学前缘,2008:152):67-79.

Outlines

/