PREDICTION OF POROSITY BASED ON BP ARTIFICIAL NEURAL NETWORK WITH WELL LOGGING DATA

Expand
  • 1.Scholl of Earth Resources and Information,China University of Petroleum,Dongying 257061,China;2.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China;3.The Department of Earth Science,Nanjing University,Nanjing 210093,China

Received date: 2005-09-07

  Revised date: 2006-03-08

  Online published: 2006-06-20

Abstract

Analyzing the shortcoming of porosity prediction,and considering the relationships between reservoir porosity and well logging data,the BP network model of prediction of reservoir porosity was established by means of BP network method of ANN theory.The error analysis and practical use show that the BP network method to predicting reservoir porosity is a feasible method.

Cite this article

LIAN Cheng-bo~1,LI Han-lin~1,QU Fang~1,CAI Fu-long~2,ZHANG Jun-tao~3 . PREDICTION OF POROSITY BASED ON BP ARTIFICIAL NEURAL NETWORK WITH WELL LOGGING DATA[J]. Natural Gas Geoscience, 2006 , 17(3) : 382 -384 . DOI: 10.11764/j.issn.1672-1926.2006.03.382

References

1]陈祖安,伍向阳.砂岩孔隙度和含泥量与波速关系的模型[J].地球物理学进展,2000,15(1):79-82.
2] 桂志先,朱广生.孔隙度与纵横波速度间的关系及其在孔隙度预测中的应用[J].石油物探,1998,37(2):36-40.
3] 周家雄,王立锋.DF气田储层孔隙度横向预测[J].中国海上油气田,2004,16(6):369-372.
4] 乐友喜,王永刚.非参数回归法在孔隙度参数预测中的应用[J].地质科学,2002,37(1):118-126.
5] 吴大奎,李亚林.利用地震资料对川东地区飞仙关鲕滩储层孔隙度的预测研究及效果分析[J].天然气工业,2001,21(3):34-36.
6] CHRNG, SIDENY. Seismic attribute technology for reserv-    oir forecasting and monitoring[J].The Leading Edge,1997,16(5):445-456.
7] 王惠濂.综合地球物理测井[M].北京:地质出版社,1990:92-107.
8] 刘东海. 人工神经网络在油气勘探中的应用[J].天然气地球科学,1994,5(5):28-31.
9] 缪小平,曾福添.基于神经网络的温度预测[J].工业安全与环保,2002,28(2):1-2.
10] 庄镇泉,王熙法.神经网络与神经计算机[M].北京:科学出版社,1991:216-234.
 
11] 靳蕃,范俊波.神经网络与神经计算机原理及应用[M].西安:西安交通大学出版社1993:146-157.
12] 李凤杰,王多云,苑克增,等.人工神经网络技术在油田储层物性预测中的应用——以西峰油田为例 [J].天然气地球科学,2004,
13] 胡文凯,关丽.利用灰色模型预测储层孔隙度[J].江汉石油学院学报,2003,25(3):39-40
Outlines

/