Natural Gas Geoscience ›› 2023, Vol. 34 ›› Issue (2): 181-193.doi: 10.11764/j.issn.1672-1926.2022.12.001

    Next Articles

Geochemical characteristics and sedimentary environment of mudshale in Shan23 sub-member of Shanxi Formation, eastern margin of Ordos Basin

Lei ZHANG1,2(),Peihua ZHAO2,Wei HOU1,2,Shuxin LI1,2,Xingtao LI1,2,Chenjun WU3,Qin ZHANG4(),Yufeng XIAO4,Wen LIU4,Dan LIU4,Congjun FENG5,Zhen QIU4   

  1. 1.Zhonglian CBM State Engineering Research Center Co. ,Ltd. ,Beijing 100095,China
    2.PetroChina Coalbed Methane Company,Beijing 100028,China
    3.Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University),Wuhan 430100,China
    4.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    5.State Key Laboratory of Continental Dynamics,Northwest University,Xi’an 710069,China
  • Received:2022-08-19 Revised:2022-11-27 Online:2023-02-10 Published:2023-03-06
  • Contact: Qin ZHANG E-mail:zhanglei2010@petrochina.com.cn;zhangqin2169@petrochina.com.cn
  • Supported by:
    The Institute-level Project of PetroChina Research Institute of Petroleum Exploration and Development(2021yjcq02);the Prospective Basic Projects of CNPC during the 14th Five-Year Plan(2021DJ2001)

Abstract:

The study of Carboniferous-Permian marine continental transitional facies shale gas in Ordos Basin mainly focuses on the second member of Shanxi Formation, and Shan23 sub-member is the most abundant layer of organic matter in the second member of Shanxi Formation. Based on the observation and sampling analysis of Chengjiazhuang section in Liulin County, through the organic carbon content, whole rock mineral composition, combined with the analysis and test data of major and trace elements, the paleoclimate, water environment, paleoproductivity and their relationships with the development of organic-rich shale in Shan23 sub-member of Shanxi Formation in the eastern margin of Ordos Basin were studied. The results show that quartz and clay minerals are absolutely dominant in Shan23 shale, and the average TOC is 2.04%. The analytical results of Sr, Sr/Ba and δ18O content show that the sedimentary environment of Shan23 shale experienced the change from saline water to brackish water and then to freshwater from bottom to top. The discrimination of Ceanom, Ni/Co and V/(V+Ni) shows that Shan23 shale was deposited under an oxygen deficient anoxic reduction environment; CaO/Al2O3*MgO and CIA indexes show that the temperature gradually decreases from bottom to top and the weathering degree weakens during the deposition period; The contents of V/Ni, Mn/Ti and δ13C isotopes indicate that the depth of the sedimentary water in the Shan23 sub-member increases first and then gradually becomes shallow. The change trend of P/Al and biological Ba in Shan23 sub-member is consistent, which shows that it increases first and then decreases from bottom to top. The enrichment of organic matter in Shan23 sub-member is mainly affected by water redox conditions and terrestrial debris input.

Key words: Element geochemical characteristics, Mudshale, Shanxi Formation, Sedimentary environment, Ordos Basin

CLC Number: 

  • TE122.1

Fig. 1

Geographical location (a) and stratigraphic column (b) of the study area (modified from Ref.[10])"

Fig.2

Field section of Chengjiazhuang, Liulin County"

Fig.3

Triangular plot of shale mineral content in Shan23 sub-member of Shanxi Formation, eastern Ordos Basin"

Fig.4

TOC distribution frequency of Shan23 sub-member of Shanxi Formation,Ordos Basin"

Table 1

Major and trace elements of Shan23 sub-member, Shanxi Formation"

样品 编号岩性主量元素含量/%微量元素含量/10-6
MnOP2O5Al2O3CaONa2OK2OSrBaThULaCeNdVNi
CJZ-31黑色页岩0.0060.05720.090.1190.0453.3866.15350.29.7662.57637.2377.56026.91088.48.458
CJZ-30黑色页岩0.0080.06919.360.1250.0373.0466.4172.68.6962.71731.2565.14026.03062.669.773
CJZ-29黑色页岩0.0110.09219.110.0640.0433.0196.98182.29.3351.92736.1172.41026.33069.4916.83
CJZ-28黑色页岩0.1510.09815.610.0490.2092.4539.73143.86.091.48821.0347.04020.62054.2464.12
CJZ-27黑色页岩0.4600.11416.840.1070.2252.6456.59248.67.9011.92327.8458.85022.53054.428.54
CJZ-26黑色页岩0.4040.11617.560.1230.2412.7959191.57.9611.52129.4460.78022.70051.2525.33
CJZ-25黑色页岩0.1280.12018.090.2460.2402.8756.82194.57.8961.59229.1960.43023.50055.7721.91
CJZ-24黑色页岩0.0570.13818.240.1740.2772.8461.31164.68.4681.6329.2560.67023.45059.4816.61
CJZ-23黑色页岩0.1070.14217.820.1520.1862.8273.4170.78.0161.61930.4363.12024.25068.2122.42
CJZ-22黑色页岩0.0640.13918.670.1140.2583.0176.12160.37.9141.76628.7358.82022.58062.3619.33
CJZ-21黑色页岩0.0910.12817.460.0780.2692.9795.42183.48.3112.01830.8362.25022.75070.6226.76
CJZ-20灰黑色页岩0.0400.14516.280.0620.1862.97195.8222.77.3441.72528.6460.95024.92063.5718.49
CJZ-19黑色页岩0.0070.07614.620.0890.0513.09119.9210.37.8272.983367.54026.300108.66.311
CJZ-18黑色页岩0.0060.05611.650.0470.0512.4497.681844.8191.66422.1542.53014.21049.435.829
CJZ-17黑色页岩0.0070.08410.890.0910.0492.43198.63476.2961.67723.9347.53018.84047.355.7
CJZ-16黑色页岩0.0070.04110.900.0600.0422.4184.9183.74.7541.32523.3245.34016.30042.035.166
CJZ-15黑色页岩0.0080.0969.690.220.0462.18134.52095.8491.72422.9143.50015.86040.445.857
CJZ-14炭质泥岩0.0090.0571.603.370.2600.116967.3438.43.7375.6579.83327.13022.28078.05136.8
CJZ-13黑色页岩0.0100.04811.060.0250.3831.32109.3805.15.6741.35818.739.47015.46048.159.482
CJZ-12黑色页岩0.0080.17914.210.0440.3252.05252.4148.77.0521.81827.4956.84022.28075.310.15
CJZ-11黑色页岩0.1101.1010.021.890.0501.41441.2112.34.6522.68930.0676.01044.01073.5949.4
CJZ-10钙质泥岩0.1580.0396.3210.640.0491.02355.81233.3630.82612.1522.5308.42247.2432.01
CJZ-09黑灰色泥岩0.1090.7228.5910.380.0521.45385.4242.74.8871.8723.4449.12022.38062.5732.39
CJZ-08灰色泥岩0.1580.0396.3210.640.0491.02355.81233.3630.82612.1522.5308.42247.2432.01
CJZ-07粉砂质泥岩0.1090.7228.5910.380.0521.45385.4242.74.8871.8723.4449.12022.38062.5732.39
CJZ-06灰色泥岩0.1420.07411.517.600.3341.68230.4285.55.5431.55818.9135.40014.90064.2240.95
CJZ-05黄色泥岩夹层0.1220.05910.849.910.3871.59271.81914.9551.32117.2932.66012.51060.2428.64
CJZ-04灰黄色泥岩0.0540.06513.947.990.2191.92173.492.396.3271.77920.6938.73013.88054.4622.67
CJZ-03灰黄色泥岩0.2430.06017.2912.100.2202.02231.2352.18.9752.11120.5939.39014.24057.3633.22
CJZ-02黄色泥岩夹层0.0810.06813.3311.020.1861.84282123.26.2921.68521.9540.17015.73073.6224.84
CJZ-01钙质泥岩0.1190.05913.3510.700.1961.82263146.16.041.61220.4737.34015.26066.1130.67

Table 2

Element calculation results of Shan23 sub-member of the Shanxi Formation"

样品

编号

岩性Sr/Ba

δ18O

/‰

Ni/CoCeanomV/(V+Ni)V/NiMn/Ti

δ13C

/‰

CaO/

(Al2O3+MgO)

CIAP/AlBabio

TOC

/%

RO

/%

CJZ-31黑色页岩0.19-14.88.290.0060.91310.452226.53-3.20.005 785.270.002350.122.190.93
CJZ-30黑色页岩0.38-15.34.34-0.0100.8656.412153.67-6.50.006 386.140.003172.521.591.01
CJZ-29黑色页岩0.53-15.62.98-0.0110.8054.129109.76-3.40.003 286.070.004182.121.450.92
CJZ-28黑色页岩0.28-14.32.02-0.0010.4580.8466.804.50.003 085.210.005143.741.180.95
CJZ-27黑色页岩0.23-15.81.55-0.0010.6561.9062.41-5.80.006 185.010.006248.531.240.91
CJZ-26黑色页岩0.31-15.62.54-0.0050.6692.0232.56-1.80.006 784.760.005191.431.070.83
CJZ-25黑色页岩0.29-15.02.60-0.0090.7182.5458.48-0.50.012 984.360.005194.430.480.86
CJZ-24黑色页岩0.37-14.72.35-0.0080.7823.58119.68-0.90.009 184.730.006164.531.160.87
CJZ-23黑色页岩0.43-14.72.87-0.0070.7533.0429.653.60.008 184.930.007170.631.370.91
CJZ-22黑色页岩0.47-14.52.45-0.0110.7633.22615.59-0.30.005 884.650.006160.221.880.85
CJZ-21黑色页岩0.52-14.62.74-0.0100.7252.63911.240.40.004 384.030.006183.331.531.02
CJZ-20灰黑色页岩0.88-14.13.33-0.0070.7753.43821.161.80.003 683.510.007222.631.261.03
CJZ-19黑色页岩0.57-14.210.52-0.0130.94517.208116.760.40.005 882.070.004210.242.010.97
CJZ-18黑色页岩0.53-14.111.90-0.0160.8958.480103.09-0.20.003 882.120.004183.954.460.92
CJZ-17黑色页岩0.57-12.510.75-0.0240.8938.30785.250.40.007 981.140.006346.963.360.98
CJZ-16黑色页岩0.46-13.88.25-0.0200.8918.13686.830.30.005 281.400.003183.663.321.04
CJZ-15黑色页岩0.64-12.68.29-0.0290.8736.90570.97-0.10.020 880.970.008208.962.461.07
CJZ-14炭质泥岩2.21-14.77.71-0.0630.3630.57120.900.21.227 271.6160.029438.3939.30.89
CJZ-13黑色页岩0.14-14.29.67-0.0040.8355.07869.390.40.002 286.510.004805.050.571.07
CJZ-12黑色页岩1.70-12.84.70-0.0110.8817.41984.690.20.003 085.450.010148.640.641.16
CJZ-11黑色页岩3.93-12.44.06-0.0120.5981.4903.55-0.80.179 086.870.091112.260.51.14
CJZ-10钙质泥岩2.89-13.55.55-0.0400.5961.4761.97-0.61.420 284.940.005122.971.31.11
CJZ-09灰黑色泥岩1.59-12.84.10-0.0260.6591.9324.080.61.110 684.650.069242.660.451.08
CJZ-08灰色泥岩0.81-11.94.19-0.0500.6111.5684.190.40.609 783.030.005122.970.50.93
CJZ-07粉砂质泥岩1.42-11.37.11-0.0360.6782.1034.4410.833 382.070.069242.660.511.01
CJZ-06灰色泥岩1.88-10.83.42-0.0320.7062.40211.060.10.529 585.510.005285.450.540.92
CJZ-05黄色泥岩夹层0.66-10.56.03-0.0260.6331.7272.640.50.654 687.530.004190.960.150.95
CJZ-04灰黄色泥岩2.29-11.64.98-0.0490.7482.9648.640.40.770 285.750.00492.330.380.91
CJZ-03灰黄色泥岩1.80-11.83.61-0.0550.6832.1565.460.50.747 685.810.003352.030.440.83
CJZ-02黄色泥岩夹层1.60-9.54.96-0.0110.6541.8886.242.40.577 586.780.004123.150.240.86
CJZ-01钙质泥岩1.28-10.712.09-0.0170.6141.5915.50-0.20.380 785.970.004146.050.310.87

Fig. 5

Vertical variation of geochemical indexes of paleo-salinity and paleo-oxidation-reducing elements in Shan23 sub-member"

Fig.6

Intersection diagram between the content of Sr/Ba and Sr"

Fig.7

Intersection diagram of V/(V+Ni) and Ni/Co"

Fig.8

Vertical variation of element geochemical indexes of paleo-water depth, paleo-climate and paleo-productivity in Shan23 sub-member"

Fig. 9

Correlation diagram of main controlling factors of shale organic matter enrichment in shan23 sub-member"

1 QIU Z, ZOU C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J].Journal of Asian Earth Sciences,2020,194:103989.
2 董大忠,王玉满,黄旭楠,等. 中国页岩气地质特征、资源评价方法及关键参数[J].天然气地球科学, 2016, 27(9):1583-1601.
DONG D Z,WANG Y M, HUANG X N, et al. Discussion about geological characteristics,resource evaluation methods and its key parameters of shale gas in China[J].Natural Gas Geo-science, 2016, 27(9):1583-1601.
3 邱振,邹才能.非常规油气沉积学:内涵与展望[J].沉积学报, 2020, 38(1):1-29.
QIU Z, ZOU C N. Unconventional petroleum sedimentology: Connotation and prospect[J].Acta Sedimentologica Sinica,2020, 38(1):1-29.
4 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1):28-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36.
5 吴浩,姚素平,焦堃,等.下扬子区上二叠统龙潭组页岩气勘探前景[J].煤炭学报, 2013, 38(5):870-876.
WU H, YAO S P, JIAO K, et al. Shale-gas exploration prospect of Longtan Formation in the Lower Yangtze area of China[J]. Journal of China Coal Society, 2013, 38(5):870-876.
6 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J].天然气工业, 2016, 36(1):19-32.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1):19-32.
7 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J].天然气工业, 2018, 38(10):11-18.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):11-18.
8 陈洪德,刘磊,林良彪,等. 川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J]. 石油与天然气地质,2021,42(4):801-815.
CHEN H D, LIU L, LIN L B, et al. Depositional responses of Xujiahe Formation to the uplifting of Longmenshan during the Late Triassic, western Sichuan Depression[J]. Oil & Gas Geology, 2021,42(4):801-815.
9 王桥,杨剑,夏时斌,等. 四川盆地新区新层系页岩气的音频大地电磁探测——以川西南乐山地区须家河组为例[J].地质学报,2022,96(2):699-711.
WANG Q, YANG J, XIA S B, et al. Audio magnetotelluric detection of shale gas in the new horizon of the new area of Sichuan Basin: A case study of the Xujiahe Formation in the Leshan area,Southwest Sichuan[J].Acta Geologica Sinica,2022,96(2):699-711.
10 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J].石油勘探与开发, 2020, 47(3):435-446.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3):435-446.
11 冯子齐. 鄂尔多斯盆地东南部山西组海陆过渡相页岩储层特征与评价[D].北京:中国地质大学(北京),2014:19-40.
FENG Z Q. Characteristics and Evaluation of the Organic-rich Shale of Shanxi Formation, Southeast in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing),2014:19-40.
12 付金华,郭少斌,刘新社,等. 鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J].吉林大学学报(地球科学版), 2013, 43(2):382-389.
FU J H, GUO S B, LIU X S, et al. Shale gas accumulation condition and exploration potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition),2013, 43(2):382-389.
13 赵可英. 鄂尔多斯盆地东北部上古生界泥页岩储层表征与评价[D].北京:中国地质大学(北京), 2015:15-20.
ZHAO K Y. Characteristic and Evaluation of Shale Reservoir of Upper Paleozoic in the Northeast of Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2015:15-20.
14 覃小丽,李荣西,王香增,等. 鄂尔多斯盆地中南部地区山西组泥页岩含气量测定及方法探讨[J].天然气地球科学, 2015, 26(10):1984-1991.
QIN X L, LI R X, WANG X Z, et al. Measuring methods of shale gas content of Shanxi Formation in central and southern Ordos Basin[J]. Natural Gas Geoscience,2015,26(10):1984-1991.
15 唐玄,张金川,丁文龙,等. 鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J].地学前缘, 2016, 23(2):147-157.
TANG X, ZHANG J C, DING W L, et al. The reservoir property of the Upper Paleozoic marine-continental transitional shale and its gas-bearing capacity in the southeastern Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2):147-157.
16 武瑾, 王红岩, 施振生,等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6):1137-1149.
WU J, WANG H Y, SHI Z S, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: A case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021,48(6):1137-1149.
17 谷一凡,蔡光银,李树新,等. 不同岩相海陆过渡相页岩孔隙结构及控制因素——以鄂东缘地区山西组山2 3亚段为例[J/OL]. 沉积学报,2021,1-19, DOI:10.14027/j.issn.1000-0550.2021.070.
GU Y F, CAI G Y, LI S X, et al. Pore structure and controlling factors of different lithofacies in transitional shale: A case study of the Shanxi Formation Shan2 3 submember, Eastern Ordos Basin[J/OL]. Acta Sedimentologica Sinica,2021, 1-19, DOI:10.14027/J/ISSN.1000-0550.2021.070.
18 WANG R L, SCARPITTA S C, ZHANG S C, et al. Later Pleistocene/Holocene climate conditions of Qing-Zang (Tibetan) Plateau inferred from stable isotopes of Zabuye Lake[J]. Earth and Planetary Science Letters, 2002, 203:461-477.
19 张金川,金之钧,袁明生. 页岩气成藏机理和分布[J].天然气工业, 2004,24(7):15-18,131-132.
ZHANG J C, JIN Z Y, YUAN M S. Reservoir mechanism of shale gas and its distribution[J].Natural Gas Industry,2004.24(7):15-18,131-132.
20 田景春, 张翔. 沉积地球化学[M]. 第1版. 北京, 地质出版社,2016.
TIAN J C,ZHANG X.Sedimentary Geochemistry[M]. 1st ed. Beijing: Geological Publishing House, 2016.
21 WALKER C.T. Evaluation of boron as paleosalinity indicator and its application to offshore prospects[J]. AAPG Bulletin, 1968, 52:751-766.
22 ADAMS T D, HAYHES J R, WALKER C T. Boron in Holocene illites of the Dovey estuary, Wales, and its relationship to paleosalinity in cyclothems[J]. Sedimentology,1965,4:189-195.
23 COUCH E L. Calculation of paleosalinityes from boron and clay mineral data[J]. AAPG Bulletin,1971,55:1829-1837.
24 钱凯,王素民,刘淑范,等. 东营凹陷早第三纪湖水盐度的计算[J]. 石油学报,1982,2(4):95-102.
QIAN K, WANG S M, LIU S F, et al. Evaluation of salinity of lake water in tertiary of the Dongying Depression[J]. Acta Petrolei Sinica, 1982,2(4): 95-102.
25 NELSON B. Sedimentary phosphate method for estimating paleosalinity[J]. Science,1967,158(3803):913-920.
26 CHIVAS A R, DECKKER P, SHELLEY J M G. Strontium content of ostracods indicates paleosalinity[J]. Nature, 1986,316:251-253.
27 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011,27(8):2213-2229.
CHEN H D, LI J, ZHANG C G, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8):2213-2229.
28 文华国. 酒泉盆地青西凹陷湖相“白烟型”热水沉积岩地质地球化学特征及成因[D]. 成都:成都理工大学,2008:53-100.
WEN H G. Geochemical Characteristics and Genesis of Lacustrine “White Smoke Type” Hydrothermal Sedimentary Rock in Qingxi Sag,Jinquan Basin[D]. Chengdu: Chengdu University of Technology, 2008:53-100.
29 尚冠雄. 华北晚古生代聚煤盆地造盆构造述略[J].中国煤田地质,1995,7(2):1-6,17.
SHANG G X. An outline of basinsing structures of North China Late Palaeozoic coal ccumulation Basin[J]. Coal Geology of China, 1995,7(2):1-6,17.
30 张鹏飞. 含煤岩系沉积学研究的几点思考[J].沉积学报, 2003,21(1):125-128,136.
ZHANG P F.Some considerations on coal measures sedimento-logy[J].Acta Sedimentologica Sinica,2003,21(1):125-128,136.
31 师晶,黄文辉,吕晨航,等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报, 2018, 39(8):876-889.
SHI J, HUANG W H, LÜ C H, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889.
32 孙彩蓉.鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D].北京:中国地质大学(北京),2017:33-35.
SUN C R. Study on Sedimentary Facies and Geochemistry of Trace Elements of Carboniferous-Permian Shale in the Eastern Ordos Basin[D]. Beijing:China University of Geosciences (Bei-jing), 2017: 33-35.
33 郝松立,李文厚,刘建平,等. 鄂尔多斯南缘奥陶系生物礁相碳酸盐岩碳氧同位素地球化学特征[J].地质科技情报, 2011, 30(2):52-56.
HAO S L, LI W H, LIU J P, et al. Characteristics of carbon and oxygen isotopes geochemistry of organic reef facies Carbo-nates of Ordovician in southern margin of Ordos[J] .Bulletin of Geological Science and Technology, 2011, 30(2):52-56.
34 屈晓荣,李俊,孙彩蓉,等. 鄂尔多斯盆地东缘柳林地区煤系泥页岩稀土元素地球化学特征[J]. 煤炭学报, 2018, 43(4): 1083-1093.
QU X R, LI J, SUN C R, et al. Geochemistry characteristics of rare earth elements in the late Paleozoic black shale from eastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(4):1083-1093.
35 汪宗欣. 元素地球化学对沉积环境的反映及其油气地质意义[D]. 北京:中国石油大学(北京), 2018:40-43.
WANG Z X. The Response of Elemental Geochemistry to Depositional Environment and Its Petroleum Geological Significance[D].Beijing:China University of Petroleum(Beijing),2018:40-43.
36 JONES B. MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.
37 LEWAN M D, MAYNARD J B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochemica et Cosmochimica.Acta,1982,46(12): 2547-2560.
38 JACOBS L, EMERSON S. Partitioning and transport of metals across the O2/H2S interface in a permanently Anoxic Basin:Framvaren Fjord,Norway Jacobs,Lucinda,Steven Emerson and Jens Skei[J]. Geochemica et Cosmochimica Acta,1985,49(6):1433-1444.
39 付金华,李士祥,徐黎明,等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J].石油勘探与开发, 2018, 45(6):936-946.
FU J H, LI S X, XU L M, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development,2018,45(6):936-946.
40 王艳鹏. 华北南缘宜阳地区中二叠统—下三叠统沉积和物源特征及其对盆山系统演化的指示[D].焦作:河南理工大学,2019:91-93.
WANG Y P. Sedimentary and Provenance Characteristics of the Middle Permian-Lower Triassic in the Yiyang Area, Southern Margin of the North China and Its Implications for the Evolution of the Basin-mountain System[D].Jiaozuo:Henan Polytechnic University, 2019: 91-93.
41 刘翰林,邹才能,邱振,等.鄂尔多斯盆地延长组7段3亚段异常高有机质沉积富集因素[J].石油学报, 2022, 43(10):1-21.
LIU H L, ZOU C N, QIU Z, et al. Sedimentary enrichment factors of extraordinarily high organic matter in the sub-member 3 of Member 7 of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(10):1-21.
42 丁江辉, 张金川, 石刚, 等. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J].石油与天然气地质, 2021, 42(1):158-172.
DING J H, ZHANG J C, SHI G, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui Province, China[J]. Oil & Gas Geology, 2021, 42(1):158-172.
43 TRIBOVILLARD N, ALGEO T J, LYONS T W, et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology, 2006,232(1/2):12-32.
44 李艳芳,邵德勇,吕海刚, 等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015,36(12): 1470-1483.
LI Y F, SHAO D Y, LÜ H G, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(12):1470-1483.
45 张琴,邱振,张磊夫,等.海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J].天然气地球科学,2022,33(3):396-407.
ZHANG Q, QIU Z, ZHANG L F, et al. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale,Daning-Jixian blocks, Ordos Basin[J].Natural Gas Geoscience, 2022, 33(3):396-407.
[1] Ying WU,Guichao DU,Ming MA. Geochemical characteristics of the sandstones of the Yanchang Formation in the Xunyi area, southern Ordos Basin [J]. Natural Gas Geoscience, 2023, 34(2): 194-209.
[2] Deyi CUI,Honggang XIN,Yadong ZHANG,Weidong DAN,Junlin CHEN,Shan ZHANG,Jiacheng LI,Shutong LI. Geochemical characteristics and shale oil significance of Chang 73 sub-member mud shale in Ningxian area, Ordos Basin [J]. Natural Gas Geoscience, 2023, 34(2): 210-225.
[3] Yuchao WANG,Zhenxue JIANG,Xianglu TANG,Xiaoxue LIU,Shijie HE,Zeyu SHAO,Zesheng HOU,Lili HOU,Dekang SONG. Analysis of gas adsorption and flowing capacity of cement mudshale gas from the Quaternary Qigequan Formation in Sanhu area, Qaidam Basin [J]. Natural Gas Geoscience, 2023, 34(2): 359-374.
[4] Jiayu ZHANG,Xiaofeng WANG,Jiang WU,Qingtao WANG,Yipu SUN,Yingzhong LU,Dongdong ZHANG,Wenhui LIU,Wanliu QIU. Hydrocarbon generation and expulsion characteristics and natural gas exploration potential of the Upper Paleozoic in southern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1433-1445.
[5] Jie WANG,Huichong JIA,Xiao SUN,Cheng TAO,Yi ZHANG,Liangbang MA,Fubin WANG,Haijian JIANG. Comprehensive evaluation on origin and source of natural gas in the Paleozoic in Fuxian area, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1476-1484.
[6] Liwen ZHANG,Chenjun WU,Daojun HUANG,Zhigang WEN,Weibo ZHAO,Yingyang XI,Hui ZHANG,Lu SUN,Huanxin SONG. Geochemical characteristics and sedimentary environment of Carboniferous Benxi Formation in eastern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1485-1498.
[7] Zhaotong SUN, Honggang XIN, Chengfu LÜ, Shengbin FENG, Qianshan ZHOU, Weidong DAN, Ying ZHANG, Xue GAO, Zhaoqing DANG. Occurrence states and organic geochemical characteristics of shale-type shale oil from Chang 73 sub-member in the Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(8): 1304-1318.
[8] Xuan LI,Junfeng ZHAO,Di WANG,Chao HU,Xudong ZHAO,Ke WANG,Bin GUAN,Hailong ZHANG. Discussion on depositional system and paleo-climate during the Early-Middle Jurassic in the western Qaidam Basin [J]. Natural Gas Geoscience, 2022, 33(7): 1060-1073.
[9] Lijun GAO,Peng WU,Xuefeng SHI,Yong LI,Jiandong PANG,Tiemei YANG. Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type [J]. Natural Gas Geoscience, 2022, 33(7): 1132-1143.
[10] Linjie FENG, Yuqiang JIANG, Fuli WU, Yu WU, Demin LIANG. Genesis and gas control mechanism of positive low-amplitude structure in the Ma51+2 sub-member in western Yan'an, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(6): 944-954.
[11] Jia CHEN, Congjun FENG, Tianjun YU, Gang CHEN, Mingming TANG, Mengsi SUN. The lower limit of physical properties of tight reservoir in He 8 Member of Y113-Y133 gas well area, Yanchang Gas Field, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(6): 955-966.
[12] Chenguang CUI,Hui ZHANG,Wenxiang LIU,Shifang LI,Yan LIU,Huanxin SONG,Chenjun WU,Zhigang WEN. Element geochemical characteristics of shale in the First Member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and Well M115 in Linxian County, Shanxi as examples [J]. Natural Gas Geoscience, 2022, 33(6): 1001-1012.
[13] Jixian TIAN, Baoqiang JI, Xu ZENG, Yetong WANG, Yaoliang LI, Guoqiang SUN. Development characteristics and main controlling factors of deep clastic reservoir of Xiaganchaigou Formation in the northern margin of Qaidam Basin [J]. Natural Gas Geoscience, 2022, 33(5): 720-730.
[14] Qin ZHANG,Zhen QIU,Leifu ZHANG,Yuman WANG,Yufeng XIAO,Dan LIU,Wen LIU,Shuxin LI,Xingtao LI. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 396-407.
[15] Yueli LIANG,Jiawang GE,Xiaoming ZHAO,Xi ZHANG,Shuxin LI,Zhihong NIE. High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd Member of Shanxi Formation, eastern margin of Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 408-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ruiqi LI,Wenya LÜ,Haonan WANG,Jie LI,Yulin LIU,Rui YUAN. Distribution characteristics of natural fractures of the typical fault anticlines in Keshen area of Kelasu Structural Belt, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(2): 271 -284 .