Natural Gas Geoscience ›› 2023, Vol. 34 ›› Issue (2): 271-284.doi: 10.11764/j.issn.1672-1926.2022.08.008

Previous Articles     Next Articles

Distribution characteristics of natural fractures of the typical fault anticlines in Keshen area of Kelasu Structural Belt, Kuqa Depression, Tarim Basin

Ruiqi LI1,2(),Wenya LÜ1,2(),Haonan WANG1,2,3,Jie LI4,Yulin LIU5,Rui YUAN6   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Beijing),Beijing 102249,China
    2.College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
    3.Chengdu Exploration and Development Research Institute of PetroChina Daqing Oilfield Company Ltd. ,Chengdu 610000,China
    4.Longdong Oil and Gas Development Company of Changqing Oil field,PetroChina,Qingyang 745000,China
    5.Tarim Oilfield Company,PetroChina,Korla 841000,China
    6.Yangtze University,Wuhan 430100,China
  • Received:2022-07-18 Revised:2022-08-18 Online:2023-02-10 Published:2023-03-06
  • Contact: Wenya Lü E-mail:lrq1997cup@163.com;wylvwenwen@163.com
  • Supported by:
    The National Natural Science Foundation of China(42002135);the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-02);the Young Top Talents Research Science Foundation of China University of Petroleum, Beijing(2462017YJRC057)

Abstract:

In order to clarify the natural fracture distribution of fault anticlines in the ultra-deep reservoirs, this paper takes the Cretaceous Bashijiqike Formation in the Keshen area of the Kelasu tectonic belt in the Kuqa Depression of Tarim Basin as an example. Combined with geological data, seismic data, FMI image logs, in-situ stress and rock mechanics parameters, the distribution characteristics of natural fractures in the typical faulted anticlines in the Keshen area are clarified by reservoir geomechanics, and the results provide a geological basis for the favorable zone exploration of tight gas in the study area. Different fault anticlines have the general characteristics of natural fracture intensity of “high-low-high” from the top, middle to bottom of the faulted anticlines. The larger the angle between wings, the more limited the distribution of fractures at the top and in the middle of the faulted anticlines, and the wider the distribution of fractures at the bottom of the faulted anticlines. The farther away from the fracture anticline axis, the more limited the fracture distribution at the top and bottom of the faulted anticlines, and the more extensive the fracture distribution in the middle of the faulted anticlines. The natural fractures at the hinge zone at the top of the fault anticlines are more developed than those in the middle and at the bottom of the fault anticlines, which improves the physical properties of the reservoirs and provides reservoir space and seepage channels for tight gas.

Key words: Faulted anticline, Natural fracture, Distribution characteristics, Favorable zone, Kelasu structural belt, Kuqa Depression

CLC Number: 

  • TE121.1

Table 1

Typical gas reservoirs and mechanical parameters of the different parts of the three typical fault anticlines in the study area"

构造样式单元类型代表气藏杨氏模量/GPa泊松比
两断式平缓褶皱断层部位克深2、克深6、克深8气藏150.22
背斜部位100.24
二级反冲构造断层部位克拉2气藏180.22
背斜部位140.25
凸型三角带断层部位克深9气藏180.24
背斜部位140.26

Fig.1

Division of structural units in the Kuqa Depression (modified from Refs.[24-26])"

Fig.2

Seismic sections of subsalt structural styles of Keshen section in Kelasu tectonic belt and mechanical models of the three typical fault anticlines (Fig.2(a) and Fig.2(b) are modified from HOU et al.[25])"

Fig.3

Fracture intensity pattern diagrams of the three typical faulted anticlines"

Fig.4

Fracture distribution characteristics of the top, middle and bottom of the anticlines in the outcrops (modified from Refs.[26,63])"

Fig.5

The relationship between thickness ratio of each part of the south and north wing of the three typical fault anticlines and the relative distance to the axis"

Fig.6

Fracture intensity distributions of the three typical faulted anticlines with different interlimb angles"

Fig.7

The relationship between thickness ratio of different parts of the three typical fault anticlines and relative distance to the axis"

Fig.8

Fracture intensity distribution in the profile crossing Well KS902"

1 杨海军, 张荣虎, 杨宪彰, 等. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学,2018,29(7):942-950.
YANG H J, ZHANG R H, YANG X Z, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2018,29(7):942-950.
2 韩秀玲, 杨贤友, 熊春明, 等. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学,2017,28(8):1280-1286.
HAN X L,YANG X Y,XIONG C M,et al.Influencing factors and efficient reservoir stimulation countermeasures in thick and ultra-deep naturally fractured reservoir[J]. Natural Gas Geoscience,2017,28(8):1280-1286.
3 曾庆鲁, 莫涛, 赵继龙, 等. 7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义——以库车坳陷下白垩统巴什基奇克组为例[J]. 天然气工业,2020,40(1):38-47.
ZENG Q L, MO T, ZHAO J L, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m: A case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry,2020,40(1):38-47.
4 张荣虎, 王俊鹏, 马玉杰, 等. 塔里木盆地库车坳陷深层沉积微相古地貌及其对天然气富集的控制[J]. 天然气地球科学, 2015, 26(4): 667-678.
ZHANG R H, WANG J P, MA Y J, et al. The sedimentary microfacies, palaeogeomorphology and their controls on gas accumulation of deep-buried Cretaceous in Kuqa Depression, Tarim Basin,China[J]. Natural Gas Geoscience,2015,26(4): 667-678.
5 史超群, 张慧芳, 周思宇, 等.塔里木盆地库车坳陷克拉苏构造带—秋里塔格构造带白垩系巴什基奇克组深层、高产储层特征及控制因素[J]. 天然气地球科学,2020,31(8):1126-1138.
SHI C Q, ZHANG H F, ZHOU S Y, et al. Comparative study on deep and high yielding reservoir characteristics and controlling factors of Cretaceous Bashijiqike Formation in Kelasu structural belt and Qiulitage structural belt of Kuqa Depression,Tarim Basin[J]. Natural Gas Geoscience,2020,31(8):1126-1138.
6 何登发,周新源,杨海军,等.库车坳陷的地质结构及其对大油气田的控制作用[J]. 大地构造与成矿学,2009,33(1):19-32.
HE D F, ZHOU X Y, YANG H J, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression Tarim Basin: A clue from new shot seismic data[J]. Geotectonica et Metallogenia,2009,33(1):19-32.
7 NENG Y, XIE H, YIN H, et al. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China[J]. Tectonophysics,2018(730):114-131.
8 ZENG Q, LU W, ZHANG R, et al. Lidar-based fracture characterization and controlling factors analysis: An outcrop case from Kuqa Depression, NW China[J]. Journal of Petroleum Science and Engineering,2018(161):445-457.
9 NELSON R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. 2nd Edition. Houston: Gulf Professional Publishing,198:51-81.
10 曾联波, 吕鹏, 屈雪峰, 等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质,2020,41(3):449-454.
ZENG L B, LÜ P, QU X F, et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology,2020, 41(3):449-454.
11 丁文龙, 尹帅, 王兴华, 等. 致密砂岩气储层裂缝评价方法与表征[J]. 地学前缘,2015,22(4):173-187.
DING W L, YIN S, WANG X H, et al. Assessment method and characterization of tight sandstone gas reservoir fractures[J]. Earth Science Frontiers,2015,22(4):173-187.
12 高帅, 曾联波, 马世忠, 等. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学,2015,26(3):427-434.
GAO S, ZENG L B, MA S Z, et al. Quantitative prediction of fractures with different directions in tight sandstone reservoirs[J]. Natural Gas Geoscience,2015,26(3):427-434.
13 能源, 李勇, 徐丽丽, 等. 克拉苏构造带盐下超深层断背斜裂缝带发育模式及预测方法[J]. 大地构造与成矿学,2017,41(1):61-68.
NENG Y, LI Y, XU L L, et al. Patterns of fracture zone in the deep subsalt layer of Kelasu structural belt and prospecting method[J]. Geotectonica et Metallogenia,2017,41(1):61-68.
14 余和中, 韩守华, 赵庆军, 等. 向斜下中和面构造油气藏——中国南方海相中—古生界油气勘探新方向[J]. 海相油气地质,2008,13(4):49-52.
YU H Z,HAN S H,ZHAO Q J, et al. Hydrocarbon accumulation below the syncline neutral surface:A new prospecting target of petroleum exploration in Mesozoic-Paleozoic marine forma-tions in southern China[J]. Marine Origin Petroleum Geology, 2008,13(4):49-52.
15 鞠玮, 侯贵廷, 黄少英, 等. 断层相关褶皱对砂岩构造裂缝发育的控制约束[J].高校地质学报,2014,20(1):105-113.
JU W, HOU G T, HUANG S Y, et al. Constraints and controls of fault related folds on the development of tectonic fractures in sandstones[J].Geological Journal of China Universities, 2014,20(1):105-113.
16 杨学君. 大北气田低孔低渗砂岩储层裂缝特征及形成机理研究[D]. 青岛:中国石油大学(华东), 2011.
YANG X J. Characteristics and Origin of Fractures in Tight Sandstone Reservoirs with Low Permeability,Dabei Gas Field[D].Qingdao:China University of Petroleum(East China),2011.
17 曾联波, 周天伟. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, 2004, 24(9): 23-25.
ZENG L B,ZHOU T W. Reservoir fracture distribution law of Kuche Depression in Tarim Basin[J]. Natural Gas Industry, 2004,24(9):23-25.
18 张仲培, 王清晨. 库车坳陷节理和剪切破裂发育特征及其对区域应力场转换的指示[J]. 中国科学(D辑:地球科学), 2004,34(S1):63-73.
ZHANG Z P, WANG Q C, Development of joints and shear fractures in the Kuqa Depression and its implication to regional stress field switching[J]. Science in China(Series D:Earth Sciences),2004,34(S1):63-73.
19 韩登林, 李忠, 寿建峰. 背斜构造不同部位储集层物性差异——以库车坳陷克拉2气田为例[J]. 石油勘探与开发, 2011, 38(3):282-286.
HAN D L, LI Z, SHOU J F, Reservoir property difference between structural positions in the anticline: A case study from Kela-2 gas field in the Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2011, 38(3): 282-286.
20 赵力彬, 石石, 肖香姣, 等. 库车坳陷克深2气藏裂缝—孔隙型砂岩储层地质建模方法[J]. 天然气工业, 2012, 32(10):10-13.
ZHAO L B, SHI S, XIAO X J, et al. Geologic modeling of fractured and porous sandstone reservoirs in the Keshen-2 gas pool of the Kuqa Depression, Tarim Basin[J]. Natural Gas Industry, 2012, 32(10): 10-13.
21 王振宇, 陶夏妍, 范鹏, 等. 库车坳陷大北气田砂岩气层裂缝分布规律及其对产能的影响[J]. 油气地质与采收率, 2014, 21(2):51-56,114-115.
WANG Z Y, TAO X Y, FAN P, et al. Distribution rule of fractures and their effect on deliverability in sandstone reservoirs, Dabei Gas Field, Kuqa foreland basin[J]. Petroleum Geology and Recovery Efficiency,2014,21(2):51-56,114-115.
22 詹彦, 侯贵廷, 孙雄伟, 等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测[J].高校地质学报, 2014, 20(2):294-302.
ZHAN Y, HOU G T, SUN X W, et al. Quantitative prediction of tectonic fractures of Jurassic sandstones in the eastern Kuche Depression[J]. Geological Journal of China Universities, 2014, 20(2):294-302 .
23 王珂, 戴俊生, 商琳, 等. 曲率法在库车坳陷克深气田储层裂缝预测中的应用[J]. 西安石油大学学报(自然科学版), 2014, 29(1):34-39.
WANG K, DAI J S, SHANG L, et al. Reservoir fracture prediction of Keshen gas field in Kuqa Depression using principal curvature method[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(1):34-39.
24 张荣虎, 王珂, 王俊鹏, 等. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
ZHANG R H, WANG K, WANG J P, et al. Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression,Tarim Basin[J].Natural Gas Geo-science, 2018, 29(9): 1264-1273.
25 侯贵廷, 孙帅, 郑淳方, 等. 克拉苏构造带克深区段盐下构造样式[J]. 新疆石油地质, 2019, 40(1): 21-26.
HOU G T, SUN S, ZHENG C F, et al. Subsalt structural styles of Keshen section in Kelasu tectonic belt[J]. Xinjiang Petroleum Geology, 2019, 40(1): 21-26.
26 周鹏, 尹宏伟, 周露, 等. 断背斜应变中和面张性段储层主控因素及预测方法——以克拉苏冲断带为例[J]. 大地构造与成矿学, 2018, 42(1): 50-59.
ZHOU P,YIN H W,ZHOU L,et al. Reservoir controlling factor and forecast of tensional zone in geostrain neutral plane of faulted anticline: Example from Kelasu fold-thrust belt[J]. Geotectonica et Metallogenia, 2018, 42(1): 50-59.
27 雷刚林, 谢会文, 张敬洲, 等. 库车坳陷克拉苏构造带构造特征及天然气勘探[J]. 石油与天然气地质, 2007, 28(6): 816-820.
LEI G L, XIE H W, ZHANG J Z, et al. Structural features and natural gas exploration in the Kelasu structural belt, Kuqa Depression[J]. Oil & Gas Geology, 2007, 28(6): 816-820.
28 徐振平, 谢会文, 李勇, 等. 库车坳陷克拉苏构造带盐下差异构造变形特征及控制因素[J]. 天然气地球科学, 2012, 23(6): 1034-1038.
XU Z P, XIE H W, LI Y, et al. Characteristics and controlling factors of the subsalt differential structure in the Kelasu structural belt, Kuqa Depression[J]. Natural Gas Geoscience, 2012, 23(6): 1034-1038.
29 能源, 谢会文, 孙太荣, 等. 克拉苏构造带克深段构造特征及其石油地质意义[J]. 中国石油勘探, 2013, 18(2): 1-6.
NENG Y, XIE H W, SUN T R, et al. Structural characteristics of Keshen segmentation in Kelasu structural belt and its petroleum geological significance[J]. China Petroleum Exploration, 2013, 18(2): 1-6.
30 SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063.
31 YIN A, NIE S, CRAIG P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics,1998, 17(1): 1-27.
32 SOBEL E R,CHEN J, HEERMANCE R V. Late Oligocene-Early Miocene initiation of shortening in the southwestern Chinese Tianshan: Implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1-2): 70-81.
33 ZHANG M L, TAN C X, TANG L J, et al. An analysis of the Mesozoic-Cenozoic tectonic stress field in Kuqa Depression,Tarim Basin[J]. Acta Geoscientica Sinica,2004,25(6): 615-619.
34 漆家福, 雷刚林, 李明刚, 等. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学,2009,33(1):49-56.
QI J F, LEI G L, LI M G, et al. Analysis of structure model and formation mechanism of Kelasu structure zone Kuqa Depression[J].Geotectonica et Metallogenia,2009,33(1):49-56.
35 谢会文, 尹宏伟, 唐雁刚, 等. 基于面积深度法对克拉苏构造带中部盐下构造的研究[J]. 大地构造与成矿学, 2015, 39(6): 1033-1040.
XIE H W, YIN H W, TANG Y G, et al. Research on subsalt structure in the central Kelasu structure belt based on the area-depth technique[J]. Geotectonica et Metallogenia, 2015, 39(6): 1033-1040.
36 杨克基, 漆家福, 马宝军, 等. 库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析[J]. 大地构造与成矿学, 2018, 42(2):211-224.
YANG K J, QI J F, MA B J, et al. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa Depression and their controlling factors[J].Geotectonica et Metallogenia,2018,42(2):211-224.
37 付小涛, 王益民, 邵剑波, 等. 超深层裂缝性致密砂岩储层砂体、裂缝发育特征及对产能的影响:以塔里木盆地库车坳陷KS2气田为例[J]. 现代地质, 2021, 35(2):326-337.
FU X T, WANG Y M, SHAO J B, et al. Characteristics and effect on productivity of the sandstone and fractures in ultra-deep and fractured tight sandstone gas reservoirs: A case study of KS2 Gas Field in Kuqa Depression, Tarim Basin[J]. Geoscience, 2021, 35(2):326-337.
38 袁龙, 信毅, 吴思仪, 等. 深层白垩系致密砂岩裂缝定性识别、参数建模与控制因素分析——以塔里木盆地库车坳陷克深地区白垩系巴什基奇克组储层为例[J]. 东北石油大学学报, 2021, 45(1): 20-31,72,6-7.
YUAN L, XIN Y, WU S Y, et al. Research on qualitative identification, parameter modeling and control factors of cracks in deep Cretaceous tight sandstone: Taking the Cretaceous Bashijiqike Formation reservoir in Kehen area, Kuqa Depression, Tarim Basin as an example[J]. Journal of Northeast Petroleum University, 2021, 45(1): 20-31,72,6-7.
39 LI Z, SONG W J, PENG S T, et al. Mesozoic-Cenozoic tectonic relationships between the Kuqa subbasin and Tian shan, Northwest China: Constraints from depositional records[J]. Se-dimentary Geology, 2004, 172(3-4): 223-249.
40 于志超, 刘可禹, 赵孟军, 等. 库车凹陷克拉2气田储层成岩作用和油气充注特征[J]. 地球科学, 2016, 41(3):533-545.
YU Z C,LIU K Y,ZHAO M J,et al.Characterization of diage-nesis and the petroleum charge in Kela 2 Gas Field,Kuqa Depression,Tarim Basin[J].Earth Science,2016,41(3):533-545.
41 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2):158-167.
ZHANG H L, ZHANG R H, YANG H J, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158-167.
42 王珂, 杨海军, 张惠良, 等. 超深层致密砂岩储层构造裂缝特征与有效性——以塔里木盆地库车坳陷克深8气藏为例[J]. 石油与天然气地质, 2018, 39(4):719-729.
WANG K, YANG H J, ZHANG H L, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir: A case study of Keshen-8 gas pool in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4): 719-729.
43 冯建伟, 孙建芳, 张亚军, 等. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制[J]. 石油与天然气地质, 2020, 41(3):543-557.
FENG J W, SUN J F, ZHANG Y J, et al. Control of fault-related folds on fracture development in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology,2020,41(3):543-557.
44 罗威, 倪玲梅. 致密砂岩有效储层形成演化的主控因素——以库车坳陷巴什基奇克组砂岩储层为例[J]. 断块油气田, 2020, 27(1):7-12.
LUO W,NI L M.Main controlling factors of formation and evo-lution of effective reservoir in tight sandstone:Taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J]. Fault-Block Oil and Gas Field,2020,27(1):7-12.
45 史超群, 王佐涛, 朱文慧, 等. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J]. 天然气地球科学, 2020, 31(12):1687-1699.
SHI C Q,WANG Z T, ZHU W H, et al. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2020,31(12):1687-1699.
46 LIU G P, ZENG L B, ZHU R K, et al. Effective fractures and their contribution to the reservoirs in deep tight sandstone in the Kuqa Depression, Tarim Basin, China[J]. Marine and Petroleum Geology, 2021(124): 104824.
47 丁中一, 钱祥麟, 霍红, 等. 构造裂缝定量预测的一种新方法——二元法[J]. 石油与天然气地质, 1998, 19(1):3-9,16.
DING Z Y, QIAN X L, HOU H, et al. A new method for quantitative prediction of tectonic fractures: Two-factor method[J]. Oil & Gas Geology, 1998, 19(1):3-9,16.
48 刘松, 孙向阳. 利用偏移距衰减属性裂缝储层检测方法[J]. 成都理工大学学报(自然科学版), 2009, 36(3):282-286.
LIU S, SUN X Y. A method for forecasting fractured reservoirs using attenuation attributes in different offsets[J]. Journal of Chengdu University of Technology (Science and- Technology Edition), 2009, 36(3):282-286.
49 曾联波, 柯式镇, 刘洋. 低渗透油气储层裂缝研究方法[M].北京:石油工业出版社,2010.
ZENG L B, KE S Z, LIU Y. Fractures Research Method for Low Permeability Oil and Gas Reservoir[M]. Beijing: Petroleum Industry Press,2010.
50 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2):543-556.
LÜ W Y, ZENG L B, CHEN S Q, et al. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J]. Geological Review, 2021, 67(2):543-556.
51 吕文雅, 曾联波, 刘静, 等. 致密低渗透储层裂缝研究进展[J]. 地质科技情报, 2016, 35(4):74-83.
LÜ W Y, ZENG L B, LIU J, et al. Fracture research progress in low permeability tight reservoirs[J]. Geological Science and Technology Information, 2016, 35(4):74-83.
52 刘敬寿, 丁文龙, 肖子亢. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6):2283-2300.
LIU J S,DING W L,XIAO Z K. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300.
53 戴俊生, 王霞田, 季宗镇, 等. 高邮凹陷南断阶东部阜宁期构造应力场及其对断层的控制作用[J]. 中国石油大学学报(自然科学版), 2011, 35(2):1-5,19.
DAI J S, WANG X T, JI Z Z, et al. Structural stress field of Funing sedimentary period and its control on faults in the east of south fault terrace in Gaoyou Sag[J]. Journal of China University of Petroleum, 2011, 35(2):1-5,19.
54 王红才, 王薇, 王连捷, 等. 油田三维构造应力场数值模拟与油气运移[J]. 地球学报, 2002, 23(2):175-178.
WANG H C, WANG W, WANG L J, et al. Three-dimensional tectonic stress field and migration of oil and gas in Tanhai[J]. Acta Geoscientia Sinica, 2002, 23(2): 175-178.
55 曾联波, 肖淑蓉, 罗安湘. 陕甘宁盆地中部靖安地区现今应力场三维有限元数值模拟及其在油田开发中的意义[J]. 地质力学学报, 1998, 4(3):60-65.
ZENG L B, XIAO S R, LUO A X. The three-dimensional finite element numerical simulation of modern stress field and its significance in the oil development of the Jingan area in the central Shaanxi-Gansu Ningxia Basin[J]. Journal of Geomechanics, 1998, 4(3): 60-65.
56 曾联波, 文世鹏, 肖淑蓉. 低渗透油气储集层裂缝空间分布的定量预测[J]. 勘探家, 1998, 3(2):24-26,6.
ZENG L B, WEN S P, XIAO S R. Quantitative prediction of fracture space distribution in low-permeability reservoir[J]. Petroleum Explorationist, 1998, 3(2): 24-26,6.
57 胡秋媛, 李理. 鲁西地区晚中生代—古近纪伸展构造的应力场数值模拟[J]. 石油实验地质, 2015, 37(2):259-266.
HU Q Y, LI L. Numerical simulations of tectonic stress fields for Late Mesozoic-Paleogene extensional tectonics in western Shandong[J].Petroleum Geology & Experiment,2015,37(2): 259-266.
58 刘爱华, 杨清, 吴均平. ANSYS三维地应力场数值模拟方法应用研究[J]. 地质力学学报, 2013, 19(2):133-142.
LIU A H, YANG Q, WU J P. A practical ANSYS 3-D numerical simulation method for in-situ stress field[J]. Journal of Geomechanics, 2013, 19(2): 133-142.
59 王珂, 张惠良, 张荣虎, 等. 塔里木盆地大北气田构造应力场解析与数值模拟[J]. 地质学报, 2017, 91(11): 2557-2572.
WANG K, ZHANG H L, ZHANG R H, et al. Analysis and numerical simulation of tectonic stress field in the Dabei Gas Field, Tarim Basin[J]. Acta Geologica Sinica,2017,91(11): 2557-2572.
60 韩志锐, 曾联波, 高志勇. 库车前陆盆地秋里塔格构造带东、西段构造变形与储层物性的差异性[J].天然气地球科学, 2014, 25(4): 508-515.
HAN Z R, ZENG L B, GAO Z Y. Difference of structure deformation and reservoirs physical property in Qiulitage structural belt of Kuqa Foreland Basin[J]. Natural Gas Geoscience,2014, 25(4): 508-515.
61 LIU G P, ZENG L B, LI H N, et al. Natural fractures in metamorphic basement reservoirs in the Liaohe Basin, China[J]. Marine and Petroleum Geology, 2011(119): 104479.
62 YU X, HOU G T, NENG Y, et al. Development and distribution characteristics of tectonic fractures in Kuqa Depression[J]. Geological Journal of China Universities, 2016, 22(4):644-656.
63 SUN S, HOU G T, ZHENG C F. Fracture zones constrained by neutral surfaces in a fault-related fold:Insights from the Kelasu tectonic zone, Kuqa Depression[J]. Journal of Structural Geology, 2017(104): 112-124.
64 CHOI J H,EDWARDS P,KO K,et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews,2016,152(1):70-87.
65 KIM Y S, PEACOCK D C P, SANDERSON D J, Fault damage zones[J]. Journal of Structural Geology,2004,26(3): 503-517.
66 LYU W Y, ZENG L B, ZHOU S B, et al. Natural fractures in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(10): 2343-2367.
67 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DING W L, ZENG W T, WANG R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74.
[1] Ke WANG, Ronghu ZHANG, Junpeng WANG, Chaofeng YU, Zhao YANG, Yan′gang TANG. Comparison of reservoir characteristics between Jurassic Ahe Formation and Cretaceous Bashijiqike Formation in Kuqa Depression of Tarim Basin and implications for exploration and developmentt [J]. Natural Gas Geoscience, 2022, 33(4): 556-571.
[2] Jiawei LIU,Hu ZHAO,Yi WANG,Wenjin ZHANG,Kang CHEN,Zhixin DI. Distribution characteristics and hydrocarbon geological significance of Permain volcanic rocks in Longhuichang-Longmen areas, eastern Sichuan Basin, SW China [J]. Natural Gas Geoscience, 2022, 33(3): 381-395.
[3] Zhikai LÜ, Haifa TANG, Qunming LIU, Yongliang TANG, Qifeng WANG, Baohua CHANG, Yanbo NIE. Dynamic evaluation method of water sealed gas for ultra-deep fractured tight gas reservoir in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(11): 1874-1882.
[4] Ke XU, Jun TIAN, Haijun YANG, Hui ZHANG, Wei JU, Xinyu LIU, Zhimin WANG, Lu FANG. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(1): 13-23.
[5] Jin LI, Jian LI, Chao WANG, Dejiang LI, Zhongxi HAN, Haizu ZHANG, Hui ZHOU, Yuhong LU, Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[6] Huitao ZHAO, Xiaopeng LIU, Li JIA, Jianling HU, Zixing LU, Guoxiao ZHOU. Accumulation regularity and target of tight sandstone gas in low hydrocarbon generation intensity area of northern Tianhuan Depression, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1190-1200.
[7] Ting-ting KANG, Feng-quan ZHAO, Xin LIU, Xiao-xue WANG, Yan YI, Hao HE, Xin-xin WANG, Min ZHANG. Main controlling factors of oil and gas enrichment and favorable zones: Case study of 3rd and 4th members of Ordovician Yingshan Formation, northern slope of Tazhong Uplift, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(4): 577-588.
[8] Zhuang-zhuang BAI, Wei YANG, Wu-ren XIE, Hui JIN, Sai-jun WU, Shi-yu MA, Qing-chao CAO. Sequence stratigraphy of Cambrian Xixiangchi Group and development characteristics of intra-platform bank in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 191-204.
[9] Xiao-fei SHANG, Sheng-xiang LONG, Tai-zhong DUAN. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs [J]. Natural Gas Geoscience, 2021, 32(2): 215-232.
[10] Mingqiang LI, Liqiang ZHANG, Zhenghong LI, Liang ZHANG, Lixin MAO, Xiaotong XU. Diagenetic facies division and logging identification of tight sandstone in the lower conglomerate member of Lower Jurassic Ahe Formation in Tarim Basin: Case study of Yiqikelike area in Kuqa Depression [J]. Natural Gas Geoscience, 2021, 32(10): 1559-1570.
[11] Chao-qun SHI, Hui-fang ZHANG, Si-yu ZHOU, Zuo-tao WANG, Jun JIANG, Xue-qi ZHANG, Xiao-jun ZUO, Hong LOU, Zhen-hong WANG, Chang-chao CHEN. Comparative study on deep and high yielding reservoir characteristics and controlling factors of Cretaceous Bashijiqike Formation in Kelasu structural belt and Qiulitage structural belt of Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1126-1138.
[12] Hai-jun YAN, Hui DENG, Yu-jin WAN, Ji-chen YU, Qin-yu XIA, Wei XU, Rui-Lan LUO, Min-hua CHENG, You-jun YAN, Lin ZHANG, Yan-wei SHAO. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth Member of Dengying Formation in Moxi area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1152-1160.
[13] Zi-xiong LIU, Jing-xuan CHANG, Xin-fa LI, Xin-Chen ZHANG, Jing ZHANG, Qing-jiu ZHANG. Fracturing direction prediction based on fracturing monitoring of tight gas reservoir [J]. Natural Gas Geoscience, 2020, 31(6): 846-854.
[14] Shuai-jie YANG, Wei-feng WANG, Dao-liang ZHANG, Xiao-dong FU, Jian-yong ZHANG, Wen-zheng LI. Distribution characteristics and formation environment of high quality source rocks of Qiangzhusi Formation in northeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 507-517.
[15] Chao-qun SHI, Zuo-tao WANG, Wen-hui ZHU, Jun JIANG, Hui-fang ZHANG, Si-yu ZHOU, Hong LOU, Xiao-jun ZUO, Gang LI, Zhen-hong WANG. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(12): 1687-1699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lei ZHANG, Peihua ZHAO, Wei HOU, Shuxin LI, Xingtao LI, Chenjun WU, Qin ZHANG, Yufeng XIAO, Wen LIU, Dan LIU, Congjun FENG, Zhen QIU. Geochemical characteristics and sedimentary environment of mudshale in Shan23 sub-member of Shanxi Formation, eastern margin of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(2): 181 -193 .