Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (2): 181-194.doi: 10.11764/j.issn.1672-1926.2021.09.014

    Next Articles

Origin and accumulation model of ultra-low permeability-tight sandstone (gravel) gas in Bohai Bay Basin

Jianying GUO1,2(),Xuening QI1,2(),Lianhua HOU2,Aisheng HAO1,2,Xu ZENG2,Shiguo LIN2,Xiugang PU3,Zengye XIE1,2,Yifeng WANG1,2,Xiaobo WANG1,2,Dawei CHEN2   

  1. 1.Key Laboratory for Natural Gas Accumulation and Development,CNPC,Langfang 065007,China
    2.Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083,China
    3.PetroChina Dagang Oilfield Company,Tianjin 300280,China
  • Received:2021-08-13 Revised:2021-09-23 Online:2022-02-10 Published:2022-02-25
  • Contact: Xuening QI E-mail:gjy_17711224@petrochina.com.cn;qixuen69@petrochina.com.cn
  • Supported by:
    The Major Science and Technology Projects of CNPC(2021DJ0602)

Abstract:

Ultra-low permeability-tight sandstone (conglomerate rock) gas reservoir is an important exploration target of natural gas at home and abroad. As a crucial oil and gas exploration basin in China, Bohai Bay Basin has discovered tight sand (conglomerate rock) gas in many depressions. However, the current research only focuses within depressions, lacking of systematic study on the distribution, origin and reservoir pattern of tight sandstone (conglomerate rock) gas reservoirs from the whole basin perspective. The research conclusively demonstrates that ultra-low permeability-tight sandstone (conglomerate rock) gas reservoir is widely distributed in the Bohai Bay Basin, covering various depression, multiple strata of Paleozoic and Cenozoic, and Upper Paleozoic coal-type gas and Paleogene oil-type gas. The Upper Paleozoic ultra-low permeability and tight sandstone gas reservoirs are mainly distributed in residual Upper Paleozoic strata of Huanghua, Linqing and Jiyang depressions. Those reservoirs are of structural gas reservoir type and mainly located in the sag and uplift areas, and mostly belong to structural gas reservoirs. Because the strata were buried deeply in the past, most of the reservoirs have high physical density. The majority of natural gas is typical coal-type gas originating in Carboniferous and Permian measures, and other is Paleogene oil-type gas. Paleogene ultra-low permeability tight gas reservoirs are widely distributed in all depressions, including the 2nd, 3rd and 4th members of Shahejie Formation(Es2, Es3 and Es4) and multiple strata in Kongdian Formation; The gas reservoirs are located in the uplift, slope and steep slope zones of the sag, including a variety of trap types, such as lithology, lithology-structure, structure reservoir etc.; The Es2 and, Es3 are commonly sandstone reservoirs, distributed in gentle slope area. The Es4 and Kongdian Formation include sandstone and conglomerate reservoirs formations, and the glutenites are mainly distributed in steep slope area. Because the Paleogene stratum belongs to continuous deposit, the reservoir physical properties are primarily controlled by burial depth. Different depressions have different densification threshold depths, ranging from 3 200 m to 4 000 m. The natural gas is mostly Paleogene oil-type gas and part of it is Upper Paleozoic coal type gas. According to the relationship between gas sources and reservoir, four patterns of reservoir forming modes are developed in this area, including near source accumulation of new reservoir, distant source distribution of Paleozoic reservoir, fault distribution of Paleozoic new reservoir and section distribution of new Paleozoic reservoir, among which the former two modes are the main accumulation modes. Two sets of Carboniferous-Permian and Paleogene strata are developed, and the natural gas remaining resource has great potential in the Bohai Bay Basin. The next targeted exploration area of tight sandstone (conglomerate rock) gas would be situated in the beneficial zone of secondary hydrocarbon generation in Carboniferous-Permian System, structures adjacent to the edge of Paleogene gas generation center, and the sweet spot in lithology reservoirs would be considered as promising areas for further exploration. The research is of instructive significance for tight sandstone (conglomerate rock) gas exploration in Bohai Bay Basin.

Key words: Tight gas, Natural gas origin, Hydrocarbon reservoir pattern, Bozhong Sag, Huanghua Depression, Jiyang Depression, Linqing Depression, Bohai Bay Basin

CLC Number: 

  • TE122

Table 1

Comparison of rock air permeability and overburden permeability calculated (according to the formula in Ref.[24])"

测试条件中渗储层低渗储层特低渗 储层致密储层
覆压基质渗透率/(10-3 μm3>101~100.1~1≤0.1
空气渗透率/(10-3 μm3>101.5~100.4~1.5≤0.4

Fig.1

Plane distribution map of ultra low permeability-tight gas reservoir in Bohai Bay Basin"

Table 2

Distribution characteristics of ultra low permeability-tight sandstone gas reservoir in Bohai Bay Basin"

序号坳陷构造带层位岩性代表气藏或分布区带油气藏特征
1

黄骅

坳陷

歧口凹陷Es1-3砂岩滨深22、滨海4、滨深3×110滨海4井Es1下段,φ=8%,K=1.52×10-3 μm2
2板桥凹陷Es3、Es1砂岩板深35、板171110-11板1711井>3 500 m储层,φ<10%,K<1.0×10-3 μm2
3南堡凹陷Es3砂岩高柳断层下降盘深层16φ=7.66%,K=2.89×10-3 μm2
4北大港构造带C、P砂岩港北潜山14-15

P: φ=10%,K=0.13×10-3 μm2

C: φ=8%,K=0.15×10-3 μm2

5沧东凹陷C、P砂岩乌马营、王官屯潜山12-13构造高部位,φ=5.79%,K=1.28×10-3 μm2
6

辽河

坳陷

东部凹陷、西部凹陷Es3砂岩中央深陷带81719深度>3 300 m,φ<10%,K<0.5×10-3 μm2
7东部凸起带C、P砂岩东部凸起带18φ=1%~7%,K=(0.01~0.10)×10-3 μm2
8渤海 海域渤中凹陷Ek砂砾岩渤中19-69披覆于低潜山之上,φ=7.8%,K=4.93×10-3 μm2
9

济阳

坳陷

东营凹陷Es4砂砾岩丰深1等20φ=3.80%,K=1.78×10-3 μm2
10沾化凹陷Es4砂岩渤南深洼、渤深5等20深洼区(>3 500 m)储层φ=8.5%,K=3.30×10-3 μm2
11C、P砂岩孤北潜山21φ<10%为主,K<1×10-3 μm2为主
12临清 坳陷东濮凹陷Es3中、下砂岩

桥口、马厂、白庙、文西、

杜寨气田22-23

深度>3 200 m,φ=9.32%,K=(0.01~0.5)×10-3 μm2
C、P砂岩文23、马厂地垒φ=5.38%~7.5%,K=(0.029~0.304)×10-3 μm2

Fig.2

Average air permeability characteristics of sandstone (conglomerate rock) reservoirs in Bohai Bay Basin"

Table 3

Chemical as well as carbon and hydrogen compositions of natural gas in Bohai Bay Basin(partial data)"

坳陷凹陷井号深度/m层位

δ13C1

/‰(PDB)

δ13C2

/‰(PDB)

δ13C3

/‰(PDB)

干燥

系数

CH4

/%

C2H6

/%

C3+ /%备注
黄骅坳陷板桥凹陷板深354 719.6~4 743.9Es3-44.90-24.90-19.0084.330.01/本文
滨深624 686.8Es33-39.80-28.20-23.700.8483.8111.783.68本文
板43-364 720~4 736Es31-44.50-29.70-25.900.8076.7511.947.14本文
板17115 101.7~5 131.9Es32-44.10-28.10-24.000.8177.7411.287.07本文
板17114 239.1~4 257.7Es31-42.50-27.00-23.600.8582.4810.84.19本文
歧口凹陷歧深8X15 011.7~5 077.3Es3-34.60-26.20-22.300.8780.886.235.74本文
歧深8X14 728.3~4 746.9Es31-35.50-27.34-23.990.9086.555.733.65本文
歧深15 084Es3-35.40-19.00-15.900.9290.995.832.45本文
歧深64 432~4 494.2Es3-41.80-27.45-23.720.8278.3211.6375.62本文
滨海64 535.3Es2-35.60-29.50-27.500.8883.957.264.23本文
滨深224 456.63~4 469.33Es2-37.80-25.20-22.000.8077.679.969.39本文
滨深224 493.50~4 547.50Es2-41.60-26.90-23.700.8683.426.796.55本文
滨深224 615.1~4 663.4Es2-41.50-26.80-23.900.4542.1722.229.51本文
歧北17014 398.7~4 416.1Es2-42.50-28.00-25.200.6763.461318.47本文
歧探1井4 927.8~5 084Es32-38.00-20.90-19.100.8882.617.194.27本文
埕594 564.4~4 574.0Es3-37.50-27.40-24.000.8376.399.696.25本文
张27×14 178.3~4 191.3Es3-38.70-27.40-27.200.8783.16.316.42本文
张海21-23L5 042.09Es2-39.45-29.36-28.130.7774.989.3912.94本文
张海171015 552.4~5 661.9Es2-39.10-29.00-28.000.7968.29.148.63本文
滨904 351.8~4 380.8Es1-41.10-27.30-27.600.8478.658.316.55本文
沧东凹陷营古14 738~4 760P-33.40-21.90-22.100.9385.724.722.18本文
营古14 959.4~4 987.7P-36.40-20.90-21.200.9080.565.593.71本文
营古24 702.8~4 734.2P-33.86-24.38-23.220.8679.36.575.93本文
乌探1井4 958.2~4 997.2P-35.72-22.18-20.330.9184.695.772.19本文
王古13 867P-35.5-25.4-23.50.8984.096.293.68本文

北大港构造带

(港北潜山)

港古15032 310.6~2 330Mz-37-26.9-27.10.8985.755.255.73本文
港古15072 013.1~2 020.9Mz-43-28.3-26.50.8479.597.987.34本文
港古15011 868.1~1 925.9Mz-42.6-28.6-27.90.8877.865.175.64本文
中15022 477.7~2 536.3P1x-39.1-28.4-27.40.9083.435.593.93本文
港古15052 338~2 363.3P1s-43.4-29.1-27.20.8381.599.277.71本文
港古15072 079.9~2 105.9C3t-42.2-29.1-27.40.7161.3213.3811.59本文
南堡凹陷南堡5-104 290.4~4 682.1Es2+3-35-24.4-21.50.9088.336.923.0531
南堡5-804 842.5~4 851.3Es2+3-38.5-24.9-21.60.8382.427.289.7931
南堡5-814 758.2~4 763.2Es2+3-37.24-27.09-24.90.8583.959.695.5731
南堡5-854 786.6~4 792.5Es2+3-35.71-23.99-20.350.9290.945.862.3931
高17-153 630.4~3 924.0Es3-37.95-27.580.7775.949.0613.6831
临清坳陷东濮凹陷白32 609.4~2 701.2Es2-34.1-26.3-25.10.9188.246.652.2529
文312 985.0~2 987Es4-27.98-25.72-25.720.9896.591.710.4329
白33 135~3 139Es31-34.9-25.1-24.70.9088.367.322.1429
白83 372.4~3 401.4Es32-34.7-25.4-25.50.8886.519.622.1829
桥69-23 719.3~3 753.8Es32-43.1-26.7-24.40.8885.918.063.3829
桥143 759.2~3 769.4Es3-45.10.8077.5910.478.6129
白133 779.2~3 886.4Es32-36.1-30.7-29.30.8579.976.597.0129
白93 906.2~3 913.4Es33-39.9-29.7-25.40.9690.152.271.2429
桥763 919.4~3 963.9Es33-45-28.2-25.10.7774.1311.6510.4129
白113 990~4 005.5Es33-39.2-27.9-27.10.9088.159.050.6929
桥584 301.4~4 306.4Es4-39.9-27.4-27.80.92875.632.4529
文2424 426.5~4 374.1Es3-40.09-26.09-24.1329
桥204 530~4 649Es34-40.03-26.7-24.10.7978.6610.5610.7729
开33/P-31.1-22.1-20.60.9291.675.253.0829
开33/C-P-35.50.9594.582.232.8129
文古2/P-29.6-24.3-21.40.9793.362.580.5129
渤海海域渤中凹陷渤中19-6-13 566.8~3 634.0Ek-38.5-27-25.50.8776.758.682.9829
冀中坳陷霸县兴隆14 607.4~4 655Es4-48.3-32.2-280.7769.812.08.77本文
牛东15 290Es4///0.8579.011.03.42本文
廊固兴93 980~4 124Es3-43.2-27.9-25.10.8477.810.04.65本文
济阳坳陷

沾化凹陷

(渤南洼陷)

孤北古23 689~3 731C—P-41.00-25.80-23.600.8075.8719.4832
孤北古23 517.70~3 534.20C—P-41.00-25.80-23.600.9695.012.940.6240
义1323 374~3 387C—P-38.00-25.40-25.000.8582.18.16.1140
义1554 528~4 574C—P-32.20-22.00-21.500.9587.643.311.5440
渤933 120~3 136C—P-37.10-19.10-17.100.9492.15.8832
渤933 230.00~3 249.40C—P-38.05-22.67-21.250.9288.996.31.5140
渤9303 546~3 650C—P-35.50-16.80-16.100.9492.885.7632
孤北古14 020~4 139C—P-35.90-23.10-21.200.9286.676.441.9140
渤深34 450~4 472Es4-39.10-26.70-23.40////32
渤深54 491.9~4 587.3Es4-38.0//0.8679.5513.0720
义1155 144.0~5 163.4Es4-35.9-24.9-21.80.9989.630.4020
义1214 426~4 438Es4-38.00-22.00-19.300.9791.12.5832

Fig.3

Drying coeffiecient of ultra low permeability-tight natural gas in Bohai Bay Basin"

Fig.4

Carbon isotope characteristics of methane in ultra low permeability-tight natural gas in Bohai Bay Basin"

Fig.5

Carbon isotope characteristics of ethane in ultra low permeability-tight natural gas in Bohai Bay Basin"

Fig.6

Correlation diagram between C1/(C1-5)-δ13C1 of ultra low permeability-natural gas in the Bohai Bay Basin"

Fig.7

Correlation diagram between δ13C2 and δ13C1 of ultra low permeability-tight natural gas in the Bohai Bay Basin (base map quoted from Ref.[36])"

Fig.8

Longitudinal changes of geochemical parameters of ultra low permeability-tight natural gas in key depressions of Bohai Bay Basin"

Fig.9

Oil and gas accumulation models in the Dongpu Depression(base map modify from Ref.[37])"

Fig.10

Oil and gas accumulation models in the Zhanhua Depression(base map modify from Ref.[38])"

1 国家能源局.SY/T6832-2011 致密砂岩气地质评价方法[S]. 北京:石油工业出版社,2011.
National Energy Administration. SY/T6832-2011 Geological Evaluating Methods for Tight Sandstone Gas[S]. Beijing:Petroleum Industry Press,2011
2 魏国齐,张福东,李君,等.中国致密砂岩气成藏理论进展[J].天然气地球科学,2016,27(2):199-210.
WEI G Q,ZHANG F D,LI J,et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience, 2016,27(2):199-210.
3 戴金星,倪云燕,吴小奇,等.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.
DAI J X,NI Y Y,WU X Q,et al.Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012,39(3):257-264.
4 张国生,赵文智,杨涛,等.我国致密砂岩气资源潜力、分布与未来发展地位[J].中国工程科学,2012,14(6):87-93.
ZHANG G S,ZHAO W Z,YANG T,et al.Resource evaluation,position and distribution of tight sandstone gas in China [J].Engineering Science,2012, 14(6):87-93.
5 戴金星,倪云燕,胡国艺,等. 中国致密砂岩大气田的稳定碳氢同位素组成特征[J]. 中国科学(地球科学),2014,44(4): 563-578.
DAI J X, NI Y Y, HU G Y, et al. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China[J]. Science China (Earth Sciences),2014,44(4):563-578.
6 邱中建,赵文智,邓松涛,等. 我国致密砂岩气和页岩气的发展前景和战略意义[J].中国工程科学,2012,14(6):4-8.
QIU Z J, ZHAO W Z,DENG S T,et al. Development prospact and strategic significance of tight gas and shale gas in China[J].Engineering Science,2012, 14(6):4-8.
7 杨涛,张国生,梁坤,等.全球致密气勘探开发进展及中国发展趋势预测[J].中国工程科学,2012,14(6):64-68.
YANG T,ZHANG G S,LIANG K, et al. The exploration of global tight sandstone gas and forecast of the development tendency in China[J]. Strategical Study of CAE,2012,14(6):64-68.
8 马洪,王循,李欣,等. 渤海湾盆地深层致密砂岩气勘探潜力浅析[J].山东科技大学学报(自然科学版),2012,31(5):63-70.
MA H,WANG X,LI X,et al.Analysis of exploration potential about tight sandstone gas in deep zone of Bohai Bay Basin[J]. Journal of Shandong University of Science and Technology(Natural Science),2012,31(5):63-70.
9 徐长贵,于海波,王军,等.渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J].石油勘探与开发,2019,46(1):25-38.
XU C G,YU H B, WANG J,et al. Formation conditions and accumulation characteristics of Bozhong19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019,46(1):25-38.
10 王永凯.歧口凹陷中深层致密砂岩气成藏地质特征与机理分析[J].录井工程,2017,28(2):108-111.
WANG Y K. Geological deep tight characteristics and mechanism analysis of middle-sandstone gas accumulation in Qikou Sag[J].Mud Logging Engineering,2017,28(2):108-111.
11 赵贤正,曾溅辉,韩国猛,等. 渤海湾盆地黄骅坳陷板桥凹陷深层低渗透(致密)砂岩气藏充注特征及成藏过程[J].石油与天然气地质,2020,41(5):913-927.
ZHAO X Z,ZENG J H,HAN G M,et al.Charging characteristics and accumulation process of deep low-permeability(tight) sand gas reservoirs in Banqiao Sag,Huanghua Depression[J].Oil & Gas Geology,2020,41(5):913-927.
12 金凤鸣,王鑫,李宏军,等.渤海湾盆地黄骅坳陷乌马营潜山内幕原生油气藏形成特征[J].石油勘探与开发,2019,46(3):521-529.
JIN F M,WANG X, LI H J,et al. Formation of the primary reservoir in Wumaying inner buried-hill of the Huanghua Depression,Bohai Bay Basin,China[J]. Petroleum Exploration and Development,2019,46(3):521-529.
13 周立宏,王鑫,付立新,等. 黄骅坳陷乌马营潜山二叠系砂岩凝析气藏的发现及其地质意义[J].中国石油勘探,2019,24(4):431-438.
ZHOU L H,WANG X,FU L X, et al. Discovery and geological significance of the Permian sandstone condensate[J]. China Petroleum Exploration, 2019, 24(4): 431-438.
14 张津宁,周建生,付立新,等. 港北潜山内幕天然气成藏地质特征与成藏过程[J].中国矿业大学学报, 2019, 48(5): 1078-1089.
ZHANG J N,ZHOU J S,FU L X,et al. Geological characteristics and accumulation process of natural gas reservoirs in Gangbei buried hill,Huanghua Depression[J]. Journal of China University of Mining-Technology, 2019, 48(5): 1078-1089.
15 赵贤正,蒲秀刚,姜文亚,等. 黄骅坳陷古生界含油气系统勘探突破及其意义[J].石油勘探与开发,2019,46(4):621-632.
ZHAO X Z,PU X G,JIANG W Y,et al.An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance[J]. Petroleum Exploration and Development,2019,46(4):621-632.
16 郭继刚,董月霞,庞雄奇,等. 南堡凹陷沙三段致密砂岩气成藏条件[J].石油天然气地质,2015,36(1):23-34.
GUN J G,DONG Y X,PANG X Q,et al. Accumulation conditions of tight sand gas in the 3rd member of the Shahejie Formation in Nanpu Sag,Bohai Bay Basin[J]. Oil & Gas Geology,2015,36(1):23-34.
17 李春华,毛俊莉,杨一鸣,等. 辽河坳陷东部凹陷致密砂岩气成藏特征[J]. 特种油气藏,2014,21(6):15-18.
LI C H,MAO J L,YANG Y M,et al. Accumulation features of tight sandstone gas in east sad of Liaohe Depression[J].Special Oil and Gas Reservoirs,2014,21(6):15-18.
18 李春华,于鹏,毛俊莉,等. 辽河坳陷东部凸起上古生界致密砂岩气成藏特征[J].特种油气藏,2013,20(1):19-22.
LI C H,YU P,MAO J L,et al. Diagenetic characteristics of tight sandstone of Upper Paleozoic of East Uplift in Liaohe Depression[J]. Special Oil and Gas Reservoirs,2013,20(1):19-22.
19 孟元林,崔存萧,张凤莲,等. 辽河坳陷西部凹陷南段异常低压背景下的致密砂岩类型预测[J].矿物岩石地球化学通报, 2016,35(4):701-709.
MENG Y L,CUI C X,ZHANG F L,et al. A prediction of tight sandstone types under abnormally low pressure in the southern part of the west sag of the Liaohe Depression[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(4):701-709.
20 杨显成. 济阳坳陷沙四段致密砂岩气储层有效性及成藏规律[D].青岛:中国石油大学(华东),2018.
YANG X C. Tight Sandstone Gas Reservoir Effectiveness and Hydrocarbon Forming Regularity of Es4 in Jiyang Depression[D].Qingdao:China University of Petroleum(East China),2018.
21 韩思杰,桑树勋,刘伟,等. 济阳坳陷石炭—二叠系致密砂岩气形成条件与成藏模式[J].石油天然气学报,2014,36(10): 50-54.
HAN S J,SANG S X,LIU W,et al.Accumulation conditions and accumulation pattern of tight sandstone gas in the Carboniferous and Permian of Jiyang Depression[J]. Journal of Oil and Gas Technology, 2014,36(10): 50-54.
22 刘景东,蒋有录,张园园,等.东濮凹陷古近系致密砂岩气成因与充注差异[J].石油学报,2017,38(9):1010-1020.
LIU J D,JIANG Y L,ZHANG Y Y,et al. Genesis and charge difference of Paleogene tight sandstone gas in Dongpu Sag[J].Acta Pctrolei Sinica, 2017,38(9):1010-1020.
23 吕雪莹,蒋有录,刘景东,等. 渤海湾盆地杜寨气田深层致密砂岩气成藏机理[J].天然气工业, 2018,38(7): 34-43.
LYU X Y,JIANG Y L,LIU J D,et al. Accumulation mechanism of deep-seated tight sandstone gas reservoirs in the Duzhai Gas Field,Bohai Bay Basin[J].Natrural Gas Industry,2018,38(7):34-43.
24 胡勇.上覆压力对低渗气层物性及供气能力的影响[J].天然气勘探与开发, 2011,34(2):25-27.
HU Y. Impact of overburden pressure on physical property of low-permeability gas reservoir and gas supply capacity[J].Natural Gas Exploration and Development,2011,34(2):25-27.
25 国建英,钟宁宁,于学敏,等. 大港探区烷烃气碳、氢同位素特征及成因类型[J].天然气地球科学,2011,22(6):1054-1063.
GUO J Y,ZHONG N N,YU X M,et al.Characteristics of carbon and hydrogen isotopes and genetic type of hydrocarben gases in Qikou Sag[J]. Natural Gas Geoscience, 2011,22(6):1054-1063.
26 国建英,李剑,于学敏,等.黄骅坳陷大港探区深层天然气成因类型与分布规律[J].石油学报,2013,34(增刊):112-119.
GUO J Y,LI J ,YU X M,et al.Origin and distribution of deep natural gas in Dagang exploration area of Huanghua Depression[J].Acta Petrolei Sinica, 2013,34(S1):112-119.
27 国建英,付立新,肖鑫,等. 黄骅坳陷大港探区高H2S天然气地球化学特征及成因[J].石油学报,2016,37(增刊):31-38.
GUO J Y,FU L X,XIAO X,et al. Geochemical characteristics and origin of natural gas with high content of H2S in Huanghua Depression[J].Acta Petrolei Sininca,2016,37(S2):31-38.
28 王振升,于学敏,国建英,等. 歧口凹陷天然气地球化学特征及成因分析[J].天然气地球科学,2010,21(4):683-691.
WANG Z S,YU X M,GUO J Y,et al. Geochemical characteristics and genesis of natural gas in Qikou Sag[J]. Natural Gas Geoscience,2010,21(4):683-691.
29 李才学,陈峰.渤海湾盆地东濮凹陷桥口—白庙地区古近系沙河街组天然气成因[J].天然气地球科学,2015,26(11):2114-2121.
LI C X, CHEN F. Origin of the natural gas from Paleogene Shahejie Formation in the Qiaokou-Baimiao areas of the Dongpu Depression,Bohai Bay Basin[J]. Natural Gas Geoscience, 2015,26(11): 2114-2121.
30 李孝甫,王晓锋,郑建京,等.辽河坳陷东部凹陷低熟气地球化学特征[J].天然气地球科学,2015,26(7):1365-1375.
LI X F,WANG X F,ZHENG J J,et al. Geochemistry of low maturity gases the Eastern Sag of Liaohe Depression,China[J]. Natural Gas Geoscience,2015,26(7):1365-1375.
31 赵杰.南堡凹陷天然气成因及有效烃源岩研究[D].青岛:中国石油大学(华东),2011.
ZHAO J. Study on Natural Gas Origin and Effective Source Rock of Nanpu Depression[D]. Qingdao: China University of Petroleum (East China),2011.
32 王力. 济阳和临清坳陷深层天然气成因鉴别与生成模式研究[D].青岛:中国石油大学(华东),2008.
WANG L. Genetic Identification and Generation Models of Deep Natural Gas in Jiyang and Linqing Super-depression [D]. Qingdao: China University of Petroleum (East China),2008.
33 戴金星.各类烷烃气的鉴别 [J].中国科学(B辑), 1992 (2): 185-193.
DAI J X.Identification of various alkane gases[J].Scientia Sinica(Chimica),1992(2):185-193.
34 国建英,于学敏,李剑,等. 大港探区歧深1井气源综合对比 [J].天然气地球科学,2009,20(3):392-399.
GUO J Y,YU X M,LI J,et al.Gas source of Qishen1 Well in Qikou Sag[J]. Natural Gas Geoscience,2009,20(3):392-399.
35 WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J].Chemical Geology, 1999,161:291-314.
36 戴金星,于聪,黄士鹏,等.中国大气田的地质与地球化学若干特征[J].石油勘探与开发,2014,41(1):1-13.
DAI J X,YU C,HUANG S P,et al. Geological and geochemical characteristics of large gas fields in China[J]. Petroleum Exploration and Development,2014,41(1): 1-13.
37 苏惠,曲丽萍,张金川,等.渤海湾盆地东濮凹陷天然气成藏条件与富集规律[J].石油实验地质,2006,28(2):123-128.
SU H,QU L P,ZHANG J C,et al.The reservior-forming condition and enrichment rule of the natural gas in the Dongpu Depression,the Bohaiwan Basin[J]. Petroleum Geology & Experiment, 2006,28(2):123-128.
38 王力,金强,刘永昌,等.济阳坳陷孤西断裂带深层天然气成因类型[J].沉积学报,2009,27(1):172-179.
WANG L,JIN Q,LIU Y C,et al. Genetic types of deep natural gas in Guxi Fault Zone in Jiyang Depression[J]. Acta Sedimentologica Sinica,2009, 27(1):172-179.
39 刘华,蒋有录,宋国奇,等. 渤海湾盆地东营凹陷沙四下亚段地层压力演化与天然气成藏[J].沉积学报,2012,30(1):197-203.
LIU H,JIANG Y L,SONG G Q,et al. Pressure evolution and gas accumulation of the Fourth Member of the Shahejie Formation in Dongying Depression,Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2012,30(1):197-203.
40 林武,李政,李柜源,等. 济阳坳陷孤北潜山带天然气成因类型及分布规律[J].石油与天然气地质,2007,28(3):419-426.
LIN W,LI Z,LI J Y,et al. Genetic types and distribution pattern of natural gases in Gubei buried-hills,Jiyang Depression[J].Oil & Gas Geology,2007,28(3):419-426.
41 王德仁, 曾正清, 许书堂,等. 东濮及邻区上古生界天然气成藏条件分析[J]. 油气地质与采收率,2005,12(3):36-38.
WANG D R,ZENG Z Q,XU S T, al. Analysis of the gas reservoir forming condition in the Upper Palaeozoic of Dongpu and its adjacent areas[J]. Petroleum Geology and Recovery Efficiency,2005,12(3):36-38.
[1] Bince LI, Fengpeng LAI, Libin ZHAO, Dongdong XU, Guangteng LU. Experiment on fluid occurrence and gas-water flow in tight gas reservoir [J]. Natural Gas Geoscience, 2021, 32(9): 1410-1420.
[2] Huitao ZHAO, Xiaopeng LIU, Li JIA, Jianling HU, Zixing LU, Guoxiao ZHOU. Accumulation regularity and target of tight sandstone gas in low hydrocarbon generation intensity area of northern Tianhuan Depression, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1190-1200.
[3] Jixian TIAN, Xiaohua JIANG, Jianying GUO, Hua KONG, Shixia REN, Fei ZHOU, Xiaoshuang SHEN, Wei SHA, Bohan QIAO, Na ZHANG, Yinnan ZHOU. Geological characteristics and enrichment conditions of lacustrine carbonate tight gas reservoir, western Qaidam Basin: Case study of Yingxiongling area [J]. Natural Gas Geoscience, 2021, 32(8): 1223-1234.
[4] Rui-feng ZHANG, Ke-tong CHEN, Jie-qiong ZHU, Xuan TANG, Zhan-wen YU, Yu-fei ZHANG, Xu ZHAO, Tao JIANG. Tight gas reservoir forming condition and resource potential in the lacustrine carbonate in the middle-deep layer of Shulu Sag of Jizhong Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2021, 32(5): 623-632.
[5] Hua WANG, Yue-hua CUI, Xue-ling LIU, Zhen-zhen QIANG, Shi-cheng WANG. Multi-layer horizontal wells development for tight sandstone gas reservoir: Case study of tight gas reservoir model zone in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(4): 472-480.
[6] Teng-qiang WEI, Chang-jiang WU, Ya-hao HUANG, Hai-tao HONG, Xiao-juan WANG, You-jun TANG, Ke PAN. Application of fluid inclusion Raman quantitative technique to the study of tight sandstone gas reservoirs: Case study of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 164-173.
[7] Xin-fei SONG, Zhong-cheng LI, Xian-tao GUO, Long-hui BAI, Zhi-long LI. Characteristics and classification evaluation of tight gas reservoirs in the 1st member of Quantou Formation of Helong-Lanjia inversion zone in Dehui Fault Depression [J]. Natural Gas Geoscience, 2020, 31(3): 375-384.
[8] Guo DU,Dan YANG,Xing-yan ZHOU,Wei-ge ZHENG,Jia-en LIN. Well test analytical model for a partial opening vertical well in enriched vertical fracture tight gas volcanic reservoir [J]. Natural Gas Geoscience, 2020, 31(10): 1367-1374.
[9] Zu-bing LI,Jun-feng CUI,Shun-yao SONG,Ya-bin CHENG,Yi LU. Reservoir characteristics and controlling factors of Permian clastic rocks in Qibei-Dongguang area of Huanghua Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(10): 1415-1427.
[10] Zhao Chang-yi, Li Yong-xin, Wang Ju-feng, Liu Hai-tao, Deng Yan, Zhao Bo-ya. Genetic types and exploration potential of natural gas in Bohai Bay Basin [J]. Natural Gas Geoscience, 2019, 30(6): 783-789.
[11] Wei Yun-sheng, Jia Ai-lin, Guo Zhi, Meng De-wei, Wang Guo-ting. Optimal deployment of multi-stage fractured horizontal wells in tight sandstone gas reservoirs [J]. Natural Gas Geoscience, 2019, 30(6): 919-924.
[12] Liu Xiao-peng, Zhao Hui-tao, Yan Xiao-xiong, Jia Ya-ni, . The geological characteristics of tight sandstone gas and exploration target evaluation in the craton basin:Case study of the Upper Palaeozoic of Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(3): 331-343.
[13] Xiao-qin Han,Tao Fang,Jun Cao,Huai-lin Gao,Bing Zhang,Li-kuan Zhang,Ruo-gu Wang,Wei Zhou. Simulation experiment of gas charging and gas-bearing change of tight sandstone reservoir of Shanxi Formation in Yan´an gas field, Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(12): 1721-1731.
[14] Zhu Kuan-liang, Wu Xiao-hong, Kang Yi-li, You Li-jun, Tian Jian, Song Jing-han. Experimental evaluation of liquid phase trapping damage on tight volcanic gas reservoirs:Case study of Shahejie Formation in 5th structure,Nanpu Depression,Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(7): 1042-1050.
[15] Wu Ming-tao, Wang Xiao-dong, Yao Tian-fu. A novel method for analysis of transient linear flow behaviors for tight gas well [J]. Natural Gas Geoscience, 2018, 29(7): 1060-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[2] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[3] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[4] . [J]. Natural Gas Geoscience, 0, (): 6 .
[5] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[6] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[7] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[8] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[9] . THE STUDY OF THE OIL-PRONE & GAS-PRONE FOR JURASSIC COALS[J]. Natural Gas Geoscience, 2006, 17(2): 183 -186 .
[10] . FLUID FLOW SIMULATION OF DIFFERENT RESERVOIR MODEL  OF PU 53[J]. Natural Gas Geoscience, 2006, 17(2): 201 -205 .