Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (2): 243-255.doi: 10.11764/j.issn.1672-1926.2021.07.009

Previous Articles     Next Articles

Comparison between the depositional systems on ramp type and S type of passive margins:Insights from stratigraphic forward models

LI WAN1,2(),Valeria BIANCHI2,Suzanne HURTER2,Tristan SALLES3,Xuanjun YUAN1,Zhijie ZHANG1   

  1. 1.Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083,China
    2.School of Earth and Environmental Sciences,University of Queensland,Brisbane 4072,Australia
    3.School of Geosciences,University of Sydney,Sydeny 2006,Australia
  • Received:2021-03-29 Revised:2021-07-14 Online:2022-02-10 Published:2022-02-25
  • Supported by:
    The Research and Development in Science and Technology Project of RIPED,CNPC “Genetic model of fine-grained sedimentation in continental lake basin and tectonic-lithofacies paleogeographic mapping of key strata in craton basin”

Abstract:

Passive margins can be divided into ramp type and S type from the perspective of morphology. Previous studies mainly focus on their influences on the delta development and sediment budget into deepwater systems. However, the individual impacts on submarine canyons and submarine fans as well as the role of shelf breaks and slope breaks for shaping deepwater depositional systems remain unsettled. In this study, stratigraphic forward modeling is applied to investigate the depositional systems on S type and ramp type of passive margins, including the spatial distribution, sediment budget, sequence stratigraphic frame, temporal evolution, and flow dynamics. The study reveals that an S type is featured by poorly-developed and progradation-dominated delta, asymmetrical erosion in the canyon, well-developed submarine fan, less affected by sea-level change. In contrast, a ramp type is characterized by well-developed and aggradation-dominated delta, the upper to middle canyon covered by delta, less distinct asymmetrical erosion, poorly-developed submarine fan, significantly influenced by sea-level change. In conclusion, shelf breaks result in less sedimentation on the shelf and more transferred into deepwater whereas slope breaks lead to less in the canyon and more unloaded at canyon mouths.

Key words: Stratigraphic forward modeling, Passive margins, S type and ramp type, Delta, Canyon, Submarine fan

CLC Number: 

  • TE121.3+2

Fig.1

The bathymetry for stratigraphic forward modelling"

Table 1

The input parameters for stratigraphic forward modelling"

参数数值
水流量/(km3/a)63
沉积物供给/(Mt/a)17.5
沉积物浓度/(kg/m30.277
粒度/mm0.002、0.004、0.01、0.05、0.1、0.15、0.2、0.3、0.4、0.5
粒度占比/%4、6、9、14、19、17、13、8、6、4
速度/(m/s)2
最大沉积/侵蚀速率/(m/a)50
河流活跃时间50%
底形大小200 km×105 km
分辨率1 km×1 km
时间模拟时间150 a
分辨率1 a

Fig.2

The simulation results of sediments distribution"

Table 2

Differences between the depositional systems on S type and ramp type passive margins"

特征S型大陆边缘平直型大陆边缘
地形特征缓陆架—陡陆坡—缓深海盆地无明显坡度变化
存在陆架坡折与陆坡坡折无明显陆架坡折与陆坡坡折
海平面控制海平面升降影响较小,主要通过改变岸线位置海平面升降影响较大,改变垂向可容纳空间与平面岸线位置
沉积物分配海底扇为主,三角洲为辅三角洲为主,海底扇为辅
有利于沉积物向深水输送不利于沉积物向深水输送
沉积中心海底扇上扇陆架边缘三角洲
三角洲三角洲前积为主,加积为辅三角洲前积为辅,加积为主
后期三角洲沉积速率低,后期三角洲沉积速率仍然较高
峡谷外岸侵蚀明显不对称侵蚀不明显
三角洲与峡谷分隔三角洲覆盖峡谷上游
海底扇峡谷与海底扇区分明显峡谷与海底扇无明显区分
浊流冲蚀沟槽浊流冲蚀沟槽不发育浊流冲蚀沟槽发育

Fig.3

The simulation results of total depositional thickness"

Fig.4

The depositional volume(a) and depositional area(b)"

Fig.5

The dip-section of the delta and interpreted sequence stratigraphic frame"

Fig.6

The evolution of depositional systems"

Fig.7

The distribution of channels and eroded districts"

Fig.8

The spatial variation of flow velocity and concentration against the flowing distance to river mouth"

Fig.9

The growth styles of shelf-margin clinoforms and the corresponding sedimentary features in front of shelf-margin clinoforms in the South China Sea(modified by Refs.[9,12,47])"

1 HARRIS P T, WHITEWAY T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1-4): 69-86.
2 洛怡, 李江海, 杨梦莲. 南大西洋西非岸盆地群构造、沉积演化对比[J]. 中国地质, 2021, 48(1): 120-128.
LUO Y, LI J H, YANG M L. A comparative study of tectonic and sedimentary evolution of West African coastal basins in the south Atlantic Ocean Region[J]. Geology in China, 2021, 48(1): 120-128.
3 BRADLEY D C. Passive margins through earth history[J]. Earth-Science Reviews, 2008, 91(1-4): 1-26.
4 POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388.
5 聂国权, 李小盼, 何登发. 北美东部被动大陆边缘盆地的分段性与油气勘探[J]. 地质科学, 2021, 56(1): 321-339.
NIE G Q, LI X P, HE D F. Segmentation and petroleum exploration of passive continental margin basins of eastern North America[J]. Chinese Journal of Geology, 2021, 56(1): 321-339.
6 温志新, 徐洪, 王兆明, 等. 被动大陆边缘盆地分类及其油气分布规律[J]. 石油勘探与开发, 2016, 43(5): 678-688.
WEN Z X, XU H, WANG Z M, et al. Classification and hydrocarbon distribution of passive continental margin basins[J]. Petroleum Exploration and Development, 2016, 43(5): 678-688.
7 NYBERG B,HELLAND-HANSEN W,GAWTHORPE R L, et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J].Sedimentary Geology,2018,373:111-133.
8 SMME T O, HELLAND‐HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387.
9 GONG C, WANG Y, PYLES D R, et al. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1211-1243.
10 陈慧, 解习农, 毛凯楠, 等. 南海北部陆缘深水峡谷体系沉积特征及形成机制[J]. 地球科学, 2020, 45(9): 3419.
CHEN H, XIE X N, MAO K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea Margin[J]. Earth Science, 2020, 45(9): 3419.
11 龚承林, 齐昆, 徐杰, 等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.
GONG C L, QI K, XU J, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.
12 GONG C, WANG Y, STEEL R J, et al. Growth styles of shelf-margin clinoforms: Prediction of sand-and sediment-budget partitioning into and across the shelf[J]. Journal of Sedimentary Research, 2015, 85(3): 209-229.
13 PORĘBSKI S J, STEEL R J. Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands[J]. Earth-Science Reviews, 2003, 62(3-4): 283-326.
14 NYBERG B, HOWELL J A. Global distribution of modern shallow marine shorelines. Implications for exploration and reservoir analogue studies[J]. Marine and Petroleum Geology, 2016(71): 83-104.
15 HARRIS P T,MACMILLAN-LAWLER M.Global overview of Continental Shelf Geomorphology Based on the SRTM30_ PLUS 30-arc Second Database[M]∥PETER T H,MILES M L.Seafloor Mapping along Continental Shelves. Berlin:the Springer Press,2016:169-190.
16 MILLIMAN J D, FARNSWORTH K L. River Discharge to the Coastal Ocean:A Global Synthesis[M]. Cambridge:Cambridge University Press, 2013.
17 BHATTACHARYA J P, COPELAND P, LAWTON T F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential[J]. Earth-Science Reviews, 2016, 153: 77-110.
18 STECKLER M S, MOUNTAIN G S, MILLER K G, et al. Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping[J]. Marine Geology, 1999, 154(1-4): 399-420.
19 杜威, 纪友亮, 李其海, 等. 不同沉积过程尺度下正演数值模拟研究进展及油气地质意义[J]. 油气地质与采收率, 2020, 27(2): 62-71.
DU W, JI Y L, LI Q H, et al. Sedimentary forward numerical modeling at different sedimentary scales: Progress and hydrocarbon significance[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 62-71.
20 BAKKE K, GJELBERG J, PETERSEN S A. Compound seismic modelling of the Ainsa II turbidite system, Spain: Application to deep-water channel systems offshore Angola[J]. Marine and Petroleum Geology, 2008, 25(10): 1058-1073.
21 杨丽玉, 徐少华, 秦磊, 等. 基于地震正演模拟的精细层序格架分析——以渤海湾盆地梁家楼地区Es3-z为例[J]. 断块油气田, 2021, 28(1): 84-88.
YANG L Y, XU S H, QIN L, et al. Refined sequence framework analysis based on seismic forward modeling: A case study of Es3-z of Liangjialou area, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 84-88.
22 杜威, 纪友亮, 张艺楼, 等. 湖泊缓坡带细粒河控三角洲沉积演化和形态特征——沉积正演数值模拟和现代沉积实例的启示[J]. 石油学报, 2021, 42(1): 33-44.
DU W, JI Y L, ZHANG Y L, et al. Depositional evolution and geometrical features of lacustrine fine-grained river-dominated deltas at the gentle slope zone: Insights from sedimentary forward numerical modeling and modern case analyses[J]. Acta Petrolei Sinica, 2021, 42(1): 33-44.
23 SALLES T, DUCLAUX G. Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes and Landforms, 2015, 40(6): 823-839.
24 PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
25 WU W.Computational River Dynamics[M].Boca Raton:CRC Press, 2007.
26 ZHANG R J. Sediment Dynamics in Rivers[M]. Beijing: China Water Resources Press,1989.
27 ABD EL-GAWAD S, PIRMEZ C, CANTELLI A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J].Marine Geology,2012,326:55-66.
28 LI F,GRIFFITHS C,DYT C,et al.Multigrain seabed sediment transport modelling for the south-west Australian shelf[J]. Marine and Freshwater Research, 2009, 60(7): 774-785.
29 SALLES T, GRIFFITHS C, DYT C, et al. Australian shelf sediment transport responses to climate change-driven ocean perturbations[J]. Marine Geology, 2011, 282(3-4): 268-274.
30 WAN L,BIANCHI V,HURTER S,et al.Evolution of a delta-canyon-fan system on a typical passive margin using stratigra-phic forward modelling[J]. Marine Geology,2020,429:106310.
31 ROBSON B J, BUKAVECKAS P A, HAMILTON D P. Modelling and mass balance assessments of nutrient retention in a seasonally-flowing estuary (Swan River Estuary, western Australia)[J]. Estuarine, Coastal and Shelf Science, 2008, 76(2): 282-292.
32 GORDON R. Sea level change and paleochannels in the Perth area[J]. Australian Geomechanics, 2003, 38(4): 84-89.
33 HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level's fall[J]. Sedimentary Geology, 1992, 81(1-2): 1-9.
34 MUTO T, STEEL R J. In defense of shelf-edge delta development during falling and lowstand of relative sea level[J]. The Journal of Geology, 2002, 110(4): 421-436.
35 陈维涛, 施和生, 杜家元, 等. 珠江口盆地陆架坡折区地层岩性圈闭形成条件及发育模式——以珠江组地层为例[J]. 石油实验地质, 2016, 38(5): 619-627.
CHEN W T, SHI H S, DU J Y, et al. Formation conditions and development model of stratigraphic-lithologic traps in shelf break zone, Pearl River Mouth Basin: Zhujiang Formation as an example[J]. Petroleum Geology & Experiment, 2016, 38(5): 619-627.
36 WYNN R B, CRONIN B T, PEAKALL J. Sinuous deep-water channels: Genesis, geometry and architecture[J]. Marine and Petroleum Geology, 2007, 24(6-9): 341-387.
37 CLARK J, KENYON N, PICKERING K. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans[J]. Geology, 1992, 20(7): 633-636.
38 SIPAHIOĞLU N, KARAHANOGLU N, ALTINER D. Analysis of Plio-Quaternary deep marine systems and their evolution in a compressional tectonic regime, Eastern Black Sea Basin[J]. Marine and Petroleum Geology, 2013, 43: 187-207.
39 NAKAJIMA T, PEAKALL J, MCCAFFREY W D, et al. Outer-bank bars: A new intra-channel architectural element within sinuous submarine slope channels[J]. Journal of Sedimentary Research, 2009, 79(12): 872-886.
40 OLARIU C, STEEL R J. Influence of point-source sediment-supply on modern shelf-slope morphology: Implications for interpretation of ancient shelf margins[J]. Basin Research, 2009, 21(5): 484-501.
41 KOLLA V. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them[J]. Marine and Petroleum Geology, 2007, 24(6-9): 450-469.
42 PAYROS A, PUJALTE V. Calciclastic submarine fans: An integrated overview[J]. Earth-Science Reviews, 2008, 86(1-4): 203-246.
43 BURGESS P M, HOVIUS N. Rates of delta progradation during highstands: Consequences for timing of deposition in deep-marine systems[J]. Journal of the Geological Society, 1998, 155(2): 217-222.
44 PICOT M, DROZ L, MARSSET T, et al. Controls on turbidite sedimentation: insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan)[J]. Marine and Petroleum Geology, 2016, 72: 423-446.
45 MAIER K L, JOHNSON S Y, HART P. Controls on submarine canyon head evolution: Monterey Canyon, offshore central California[J]. Marine Geology, 2018, 404: 24-40.
46 SYLVESTER Z, DEPTUCK M, PRATHER B, et al. Seismic Stratigraphy of a Shelf-edge Delta and Linked Submarine channels in the Northeastern Gulf of Mexico[M]∥ SYLVESTER Z, DEPTUCK M, PRATHER B,et al. Application of the Principles of Seismic Geomorphology to Continental-Slope and Base of slope Systems: Case Studies from Seafloor and Near-seafloor Analogues:Tulsa: SEPM Special Publication, No.99. 2012.
47 WANG Y, XU Q, LI D, et al. Late miocene red river submarine fan, northwestern South China Sea[J]. Chinese Science Bulletin, 2011, 56(14): 1488-1494.
[1] Cheng CHEN, Yu QI, Zi-liang YU, Bo WANG. Seismic identification of superposition relationship of the shallow water delta channel sand bodies: Case study of Linxing S area in eastern Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(5): 772-780.
[2] Chen-he ZHANG, Jun-zheng HAN, You-liang JI, Yong ZHOU, Rui SU, Shi-chao WANG, Jun-xia YIN, Su-hua ZHANG, Lin TANG, Jin-xian LIU. Distribution characteristics and stacking patterns of sandbodies in the continental lacustrine fan delta-beach dam system: A case study from submember 3 upper of Paleogene Shahejie Formation in Liuxi area, Raoyang Sag, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(4): 518-531.
[3] Tian-shu Zhang, Shi-zhen Tao, Yin-ye Wu, Jia-jing Yang, Zheng-lian Pang, Xiao-ping Yang, Yan-yan Chen, Miao Yuan, Min Liu, Jian-wei Fan, Rong-chang Feng. Control of sequence stratigraphic evolution on the types and distribution of favorable reservoir in the delta and beach-bar sedimentary system: Case study of Jurassic Lianggaoshan Formation in Central Sichuan Basin, China [J]. Natural Gas Geoscience, 2019, 30(9): 1286-1300.
[4] Qiong-hua Wan,Wei-xin Liu,Hua Wang,Li-qun Heng,Yu-cheng Wang,Yong-ming Gao. Research on sedimentary architecture pattern of braided river delta front of Lufeng Depression in Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2019, 30(12): 1732-1742.
[5] Zhong Jia,You Li,Zhang Ying-zhao,Qu Xi-yu,Dai Long,Wu Shi-jiu. Diagenesis and porosity evolution of the Huangliu Formation canyon-channel reservoir in Ledong-Lingshui Sag,Qiongdongnan Basin [J]. Natural Gas Geoscience, 2018, 29(5): 708-718.
[6] Zhang Guang-quan,Hu Xiang-yang,Sun Bing,Jia Yue-wei. Sedimentary characteristics and controlling factors of gas condensate reservoir of Ying Ⅳ formation in Longfengshan Gasfield,Songliao Basin,China [J]. Natural Gas Geoscience, 2017, 28(4): 502-513.
[7] Qian Kai, Sun Xiao-hui, Xu Xiao-qiong, Han Rong-hua, Fan Yun, Wei Xing, Chang Xin-ling, Ren Zhu-lin, Cui Ya-ya. Petroleum geology,hydrocarbon distribution and accumulation fairway study in the Lower Indus Basin [J]. Natural Gas Geoscience, 2017, 28(12): 1797-1809.
[8] Li Ya-long,Yu Xing-he,Shan Xin,Yao Zong-quan,Li Shun-li,Sun Le,Yang Zhi-hao,Jin Li-na. The characteristics and model of the braided-river delta of the Wulabo Formation of the Sigonghe section in the southern Junggar Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1678-1688.
[9] Li Chao,Chen Guo-jun,Zhang Gong-cheng,Lü Cheng-fu,Yang Hai-zhang,Ma Ming,Han Yin-xue,Bi Guang-xu. Developmental characteristics and provenances of the submarine fans developed duringthe Middle Miocene in the eastern deepwater area of the Qiongdongnan Basin [J]. Natural Gas Geoscience, 2017, 28(10): 1555-1564.
[10] Yan Ying-kai,Han Yin-xue,Ma Ming,Chen Guo-jun,Lü Cheng-fu,Yang Hai-zhang,Chen Ying. Study on delta-deepwater fan sedimentary system of Sanya Formationin the Baodao-Changchang Depression,Qiongdongnan Basin [J]. Natural Gas Geoscience, 2017, 28(10): 1565-1573.
[11] Yin Na,Yang Hai-zhang,Ma Ming,Zhang Gong-cheng,Lü Cheng-fu,Zhao Zhao,Li Chao. Provenance of Central Canyon in the Upper Miocene tothe Pliocene in the Qiongdongnan Basin [J]. Natural Gas Geoscience, 2017, 28(10): 1582-1592.
[12] Zhang Yang, Qiu Long-wei, Yang Bao-liang, Wang Jun, Li Ji, Tian Mei-rong, Sui Shu-ling. Research on sedimentary characteristics of river dominated delta mouth bar and influences affected by water level fluctuations during the formation [J]. Natural Gas Geoscience, 2016, 27(5): 809-819.
[13] Xie Yuhong,Fan Caiwei,Zhou Jiaxiong,Zhang Yingzhao,Tan Jiancai,Ren Keying. Sedimentary features and controlling factors of the gravity flows in submarine fan of Middle Miocene in the Qiongdongnan Basin [J]. Natural Gas Geoscience, 2016, 27(2): 220-228.
[14] Ablimit·Imin,Tang Yong,Cao Jian,Chen Gangqiang,Chen Jing,Tao Keyu. Accumulation mechanism and enrichment rules of the continuous hydrocarbon plays in the Lower Triassic Baikouquan Formation of the Mahu Sag,Junggar Basin [J]. Natural Gas Geoscience, 2016, 27(2): 241-250.
[15] LI Shu-tong,YAO Yi-tong,LIU Zhi-wei,WANG Yang,MOU Wei-wei,YAN Can-can. Comparative Study of Underwater Distributary Channel Sandbodiesin the Shallow-water Delta from Chang 81 of Jiyuan and Northern Shaanxi Area [J]. Natural Gas Geoscience, 2015, 26(5): 813-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[2] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[3] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[4] . [J]. Natural Gas Geoscience, 0, (): 6 .
[5] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[6] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[7] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[8] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[9] . THE STUDY OF THE OIL-PRONE & GAS-PRONE FOR JURASSIC COALS[J]. Natural Gas Geoscience, 2006, 17(2): 183 -186 .
[10] . FLUID FLOW SIMULATION OF DIFFERENT RESERVOIR MODEL  OF PU 53[J]. Natural Gas Geoscience, 2006, 17(2): 201 -205 .