Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (4): 492-509.doi: 10.11764/j.issn.1672-1926.2020.12.015

Previous Articles     Next Articles

Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin, China

Yun-yan NI1,2(),Li-miao YAO1,2,Feng-rong LIAO1,2,Jin-liang GAO1,2,Jian-ping CHEN1,2,Jian-li SUI3,Di-jia ZHANG1,2   

  1. 1.Key Laboratory of Petroleum Geochemistry,China National Petroleum Corporation,Beijing 100083,China
    2.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    3.Institution of Geology,China Earthquake Administration,Beijing 100029,China
  • Received:2020-12-09 Revised:2020-12-30 Online:2021-04-10 Published:2020-04-26
  • Supported by:
    The China National Key Research and Development Projects(2019YFC1805505);the Basic Research and Strategic Reserve Technology Research Fund Project of Institutes Directly under CNPC(2017D-5008-08)

Abstract:

Hydraulic fracturing technology is one of the core technologies of shale gas development. Large-scale hydraulic fracturing technology may bring a large amount of flowback water (including both flowback water and produced water), and flowback water has the risk of polluting groundwater and surface water. In this paper, the geochemical characteristics of flowback water from Weiyuan shale gas development area and formation water from different strata in Sichuan Basin are analyzed. The results show, flowback water in Weiyuan is characterized by high TDS and high content of heavy metal. However, compared to formation water, the contents of Na (7 334 mg/L, n=63), Ca (297 mg/L, n=62), Sr (73.07 mg/L, n=64), Mg (32.1 mg/L, n=42), Ba (153.12 mg/L, n=64), Mn (1.83 mg/L, n=35), Li (17.53 mg/L, n=64), Br (72 mg/L, n=70), and Cl (12 578 mg/L, n=70) in flowback water are basically lower than that of formation water. While the content of B (38.2 mg/L, n=64) in flowback water is similar to that of the Permian and Triassic formation water, but lower than that of the Sinian and Cambrian formation water. The ratio of B/Cl, Li/Cl and Na/Cl of flowback water is higher than that of formation water, but the ratio of Ca/Cl and Br/Cl of flowback water is lower than that of formation water. The flowback water, hydraulic fracturing fluid and Cambrian formation water has very good linear dependence between the contents of Br and Cl (R2=0.967 3), which implies that flowback water was a mixture of the hydraulic fracturing fluid and the saline formation water retained in Silurian shale and the brine in this formation is similar to that in the Cambrian. Because of the dolomitization, formation water has the characteristic of enriched in calcium and depleted in magnesium, therefore, the flowback water also has such characteristic. Compared with the standards for drinking water quality (GB 5749-2006), the contents of sodium, chlorine, boron, barium, manganese, iron, thallium, SO42- and TDS of flowback water, are much higher than that of the former, which have potential impact on the environment and cannot be directly discharged. The treatment of flowback water in Weiyuan mainly adopts the recycling method. If the chemical composition of the main and trace elements in the flowback water can be targeted for preliminary treatment before recycling, the influence of the complex components of the flowback water on the shale gas production and exploitation difficulty can be reduced, so as to greatly improve the feasibility of this method. The study of chemical composition difference between shale gas flowback water and conventional formation water and its potential environmental risk provides important scientific basis for treatment of flowback water and pollution prevention and control.

Key words: Hydraulic fracturing flowback water, Formation water, Shale gas, Weiyuan, Sichuan Basin, Environmental risks

CLC Number: 

  • TE122.1+13

Table 1

Characteristics of major and trace elements in flowback water of Weiyuan shale gas development zone and formation water of different strata in Sichuan Basin (data from Refs.[6, 21-24])"

样品数值NaCaMgClBrBLiSrBaMnNa/ClCa/ClMg/ClBr/ClLi/ClB/ClSr/Cl
/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)
威远返排液最小值3 954118145 37021.0011.5110.6233.5658.320.630.4550.0100.0020.0020.0040.0020.001
最大值20 8641 8234937 068257.0056.2258.96418.85503.805.191.6840.0440.0070.0040.0160.0210.005
平均值7 3342973212 57872.0938.2017.5373.07153.121.830.9780.0200.0040.0020.0080.0110.002
样品数6362427070646464643563624270646464
震旦系地层水最小值3 3151 51023222 44143.0020.262.5444.00274.601.720.1670.0310.0070.0010.0010.0030.001
最大值38 96819 1587 390126 627191.00402.51127.33169.001 373.004.650.7640.2150.1770.0030.0140.0430.002
平均值17 7123 6231 18549 168121.67239.0454.7592.331 011.913.180.4300.0580.0300.0020.0080.0250.001
样品数84141413333412841413333
寒武系地层水最小值3 4511 4932199 84434.0041.708.15142.0023.290.310.5410.0240.0040.0020.0040.0140.004
最大值44 6477 8962 67488 944376.00353.2685.21591.002 608.700.890.8570.3020.1790.0030.0090.0290.006
平均值27 8293 4621 07157 416241.25256.3845.47426.251 192.200.600.7390.0660.0350.0030.0060.0220.005
样品数1414141444441421414144444
二叠系地层水最小值1 9512343310 122123.004.690.9843.004.310.540.1310.0200.0040.0030.0000.0010.002
最大值20 02225 3085 31473 724934.0070.6633.091 368.00289.841.670.9100.3040.1050.0060.0030.0060.014
平均值12 0194 75296439 130397.8636.0619.13634.8084.301.280.6640.0800.0270.0040.0030.0040.009
样品数7101010788583710107885
三叠系飞仙关组地层水最小值11 2807103731 4290.4110.0120.002
最大值39 8617 7743 59966 5291.1670.1790.124
平均值23 3544 6991 13045 6790.7580.1060.041
样品数9989998
三叠系须家河组地层水最小值7691 72921311 646811.584.7160.002.060.080.0400.0430.0090.0030.000 40.000 020.001
最大值65 91730 1302 853281 1571 472165.3958.392 166.003 920.3537.801.5110.3940.0930.0080.0040.0080.008
平均值39 84314 6741 560136 52889733.3129.061 216.971 686.137.780.4990.1050.0200.0050.0020.0010.004
样品数4246464619321943444442464619193943

Table 2

The Mann-Whitney U non-parametric test statistical p value of the major and trace elements of the flowback water of Weiyuan shale gas and the formation water of the Sinian, Cambrian, Permian, Triassic Feixianguan and Xujiahe formations"

样品数值NaCaMgClBrBLiSrBaMnNa/ClCa/ClMg/ClBr/ClLi/ClB/ClSr/Cl
震旦系地层水p0.004<0.001<0.001<0.0010.3010.2850.3710.806<0.0010.144<0.001<0.001<0.0010.0880.9230.284<0.001
平均值较大者震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水返排液震旦系地层水震旦系地层水返排液返排液震旦系地层水返排液
寒武系地层水p<0.001<0.001<0.001<0.0010.0790.0100.980<0.001<0.0010.410<0.001<0.001<0.0010.1250.166<0.001<0.001
平均值较大者寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水返排液返排液寒武系地层水寒武系地层水寒武系地层水返排液寒武系地层水寒武系地层水
二叠系地层水p0.049<0.001<0.001<0.001<0.0010.9860.7060.0190.0250.6180.008<0.001<0.0010.001<0.001<0.0010.014
平均值较大者二叠系地层水二叠系地层水二叠系地层水二叠系地层水二叠系地层水返排液二叠系地层水二叠系地层水返排液返排液返排液二叠系地层水二叠系地层水二叠系地层水返排液返排液二叠系地层水

三叠系

飞仙关组地层水

p<0.001<0.001<0.001<0.0010.018<0.0010.003
平均值较大者飞仙关组地层水飞仙关组地层水飞仙关组地层水飞仙关组地层水返排液飞仙关组地层水飞仙关组地层水

三叠系

须家河组地层水

p<0.001<0.001<0.001<0.001<0.001<0.0010.002<0.001<0.0010.005<0.001<0.001<0.001<0.001<0.001<0.001<0.001

平均值

较大者

须家河组地层水须家河组地层水须家河组地层水须家河组地层水须家河组地层水返排液须家河组地层水须家河组地层水须家河组地层水须家河组地层水返排液须家河组地层水须家河组地层水须家河组地层水返排液返排液须家河组地层水

Fig.1

Plots of Na versus Cl (a) and Na/Cl versus Cl (b) of flowback water and formation water from the Sichuan Basin (data from Refs.[6, 21-24, 30])"

Fig.2

Plots of Ca versus Cl (a) and Ca/Cl versus Cl (b) of flowback water and formation water from the Sichuan Basin (data from Refs.[6, 21-24, 30])"

Fig.3

Plots of Mg versus Cl (a), Mg/Cl versus Cl (b) of flowback water and formation water from Sichuan Basin (data from Refs.[6, 21-23, 30])"

Fig.4

Plots of Br versus Cl(a) and Br/Cl versus Cl(b) of flowback water and formation water from the Sichuan Basin (data from Ref.[6])"

Fig.5

Plots of B versus Cl (a), B/Cl versus Cl (b), Li versus Cl (c) and Li/Cl versus Cl (d) of flowback water and formation water from Sichuan Basin (data from Ref.[6])"

Fig.6

Plots of Sr versus Cl (a), Sr/Cl versus Cl (b) of flowback water and formation water from Sichuan Basin (data from Refs.[6, 21-23, 30])"

Fig.7

Plots of Ba versus Cl (a), Mn versus Cl (b) of flowback water and formation water from Sichuan Basin (data from Refs.[6, 21-23, 30])"

Table 3

Typical chemical components and effect of hydraulic fracturing fluid (modified from Refs.[59-60])"

成分常用物质举例体积占比/%作用
水和砂砂悬浮液99.51“支撑剂”砂粒保持微裂缝张开
盐酸0.123清理井筒,溶解矿物,在岩石中产生裂缝
降阻剂聚丙烯酰胺、石油馏分0.088降低液体和管道之间的摩擦
表面活性剂乙醇、异丙醇0.085增加压裂液黏度,降低表面张力
阻垢剂乙二醇0.043防止管道结垢
pH调节剂碳酸钠、碳酸钾、醋酸0.011控制pH值在合理范围内,确保化学添加剂效用
铁控制剂柠檬酸、巯基乙酸0.004防止金属氧化物沉淀
阻蚀剂异丙醇、乙醛、N, N-二甲基甲酰胺0.002防止管道腐蚀
杀菌剂戊二醛、DBNPA0.001抑制细菌生长,防止因聚合物降解导致黏度下降,影响交联、携砂
黏土稳定剂氯化钾0.06防止黏土膨胀、分散、运移
交联剂硼酸盐、钛、锆及铝化合物0.007促进交联增稠,提高压裂液和酸化液黏度,达到携带支撑剂的目的
胶凝剂瓜尔胶/黄原胶 、羟乙基纤维素、磷酸酯铝盐0.056增加液体黏度,降低酸的传质速度
破胶剂过硫酸铵,过氧化镁、高锰酸钾0.01降低液体黏度,促使压裂液破胶返排

Fig.8

Plot of Br versus Cl of flowback water and injected hydraulic fracturing fluid[6]"

Fig.9

Plots of Br versus Cl of flowback water, injected hydraulic fracturing fluid toward Cambrian formation water (a) or Sinian formation water (b) (data from Ref.[6])"

Fig.10

Plots of Log Cl versus Log Br (a) and Log Na versus Log Br (b) (date from Ref.[6])"

Table 4

Inorganic chemical composition of flowback water of Weiyuan shale gas development zone"

水样/标准数值

TDS

/(mg/L)

Na

/(mg/L)

Cl

/(mg/L)

B

/(mg/L)

Ba

/(mg/L)

Mn

/(mg/L)

Mo

/(mg/L)

Pb

/(mg/L)

Tl /(mg/L)

SO42-

/(mg/L)

Fe

/(mg/L)

威远返排液最小值11 5703 9545 37011.5158.320.630.0110.0010.000 8638
最大值59 78020 86437 06856.22503.805.190.0830.0200.002 24860
平均值19 6587 33412 57838.20153.121.830.030.0060.001 6
生活饮用水卫生标准GB5749-2006

1 000

(20)

200

(37)

250

(50)

0.50

(76)

0.70

(219)

0.10

(18)

0.070.01

0.000 1

(1.6)

250

0.3

(127~200)

农田灌溉水质标准GB5084-20053501~30.2
污水综合排放标准GB8978-19962.0~5.01
地表水环境质量标准GB3838-20022500.10.01~0.12500.3
1 U.S. ENERGY INFORMATION ADMINISTRATION. U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2018[EB/OL].[2020-12-13]. https://www.eia.gov/naturalgas/crudeoilreserves/archive/2018/.
2 WARNER N R, KRE D, et al. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas[J]. Applied Geochemistry, 2013, 35: 207-220.
3 WARNER N R, DARRAH T H, JACKSON R B, et al. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations[J]. Environmental Science & Technology, 2014, 48(21): 12552-12560.
4 HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.
5 VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J].Environmental Science & Technology,2014,48(15): 8334-8348.
6 NI Y Y, ZOU C N, CUI H Y, et al. The origin of flowback and produced waters from Sichuan Basin, China[J]. Environmental Science & Technology, 2018, 52: 14519-14527.
7 ROWAN E, ENGLE M, KRAEMER T, et al. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania[J]. AAPG Bulletin, 2015, 99(2): 181-206.
8 PARKER K M, ZENG T, HARKNESS J, et al. Enhanced formation of disinfection by products in shale gas wastewater-impacted drinking water supplies[J]. Environmental Science & Technology, 2014, 48(19): 11161-11169.
9 HARKNESS J S, DWYER G S, WARNER N R, et al. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: Environmental implications[J]. Environmental Science & Technology, 2015, 49(3): 1955-1963.
10 杨德敏, 喻元秀, 梁睿, 等. 我国页岩气重点建产区开发进展、环保现状及对策建议[J]. 现代化工, 2019, 39(1): 1-6.
YANG D M, YU Y X, LIANG R, et al. Development progress and environmental protection status in China's key shale gas construction areas and suggestions[J]. Modern Chemical Industry, 2019, 39(1): 1-6.
11 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16.
LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
12 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19.
LIANG D G, GUO T L, BIAN L Z, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19.
13 LIU S, MA W, JANSA L, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Energy Exploration & Exploitation, 2013, 31(2): 187-219.
14 DAI J X, ZOU C N, DONG D Z, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 444-463.
15 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
16 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
17 ZOU C N, NI Y Y, LI J, et al. The water footprint of hydraulic fracturing in Sichuan Basin, China[J]. Science of the Total Environment, 2018, 630: 349-356.
18 KONDASH A J, LAUER N E, VENGOSH A. The intensification of the water footprint of hydraulic fracturing[J]. Science Advances, 2018, 4(8):eaar5982.
19 张小涛, 陈满, 蒋鑫, 等. 页岩气井产能评价方法研究[J]. 天然气地球科学, 2016, 27(3): 549-553.
ZHANG X T, CHEN M, JIANG X, et al. Productivity evaluation method of shale gas well[J]. Natural Gas Geoscience, 2016, 27(3): 549-553.
20 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169.
MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
21 秦胜飞, 杨雨, 吕芳, 等. 四川盆地龙岗气田长兴组和飞仙关组气藏天然气来源[J]. 天然气地球科学, 2016, 27(1): 41-49.
QIN S F, YANG Y, LV F, et al. The origin of gas in the Changxing-Feixianguan gas pools in the Longgang Gas Field in the Sichuan Basin,China[J].Natural Gas Geoscience, 2016, 27(1): 41-49.
22 秦胜飞, 周国晓, 李伟, 等. 四川盆地威远气田水溶气脱气成藏地球化学证据[J]. 天然气工业, 2016, 36(1): 43-51.
QIN S F, ZHOU G X, LI W, et al. Geochemical evidence of water-soluble gas accumulation in the Weiyuan Gas Field, Sichuan Basin[J]. Natural Gas Industry,2016,36(1): 43-51.
23 QIN S, LI F, LI W, et al. Formation mechanism of tight coal-derived-gas reservoirs with medium-low abundance in Xujiahe Formation, central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 144-154.
24 李伟,秦胜飞. 四川盆地须家河组地层水微量元素与氢氧同位素特征[J]. 石油学报, 2012, 33(1): 55-63.
LI W, QIN S F. Charactristics of trace elements and hydrogen and oxygen isotoopes in the formation water of the Xujiahe Formation,Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(1): 55-63.
25 李伟, 杨金利, 姜均伟, 等. 四川盆地中部上三叠统地层水成因与天然气地质意义[J]. 石油勘探与开发, 2009, 36(4): 428-435.
LI W, YANG J L, JIANG J W, et al. Origin of Upper Triassic formation water in middle Sichuan Basin and its natural gas significance[J].Petroleum Exploration and Development, 2009, 36(4): 428-435.
26 MCCAFFREY M A, LAZAR B, HOLLAND H D. The evaporation path of seawater and the coprecipitation of Br (super -) and K (super +) with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-937.
27 CARPENTER A B. Origin and chemical evolution of brines in sedimentary basins[C]∥ The 53rd SPE Annual Fall Technical Conference and Exhibition, 1-3 October, 1978, Society of Petroleum Engineers: Houston, Texas, SPE-7504-MS.
28 DRESEL P E, ROSE A W. Chemistry and origin of oil and gas well brines in western Pennsylvania: Pennsylvania Geological Survey[EB/OL]. 4th Series, Open-File Report OFOG 10-01.0, 48 p., Portable Document Format (PDF). www.dcnr.state.pa.us/topogeo, 2010.
29 HOLLAND H D. The Chemistry of the Atmosphere and Oceans[M]. New York: John Wiley and Sons, 1978:351.
30 QIN S, LI F, ZHOU Z, et al. Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue Gas Field in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 83-90.
31 COLLINS A G. Geochemistry of Oilfield Waters[M]. Amsterdam-Oxford-New York:Elsevier Scientific Publishing Com-pany, 1975:1-496.
32 HOWER J, ESLINGER E V, HOWER M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J].Geological Society of Am-erica Bulletin, 1976, 87(5): 725-737.
33 BOLES J R. Active ankerite cementation in the subsurface Eocene of southwest Texas[J]. Contributions to Mineralogy & Petrology, 1978, 68(1): 13-22.
34 马永生, 郭彤楼, 赵雪凤, 等. 普光气田深部优质白云岩储层形成机制[J]. 中国科学:地球科学,2007,37(增刊II): 43-52.
MA Y S, GUO T L, ZHAO X F, et al. The formation mechanism of high-quality dolomite reservoir in Puguang deep gasfield[J]. Science China:Earth Sciences,2007,37(SII):43-52.
35 韩晓涛, 鲍征宇, 谢淑. 四川盆地西南中二叠统白云岩的地球化学特征及其成因[J]. 地球科学, 2016, 41(1): 167-176.
HAN X T, BAO Z Y, XIE S. Origin and geochemical characteristics of dolomites in the Middle Permian Formation, SW Sichuan Basin,China[J]. Earth Science,2016,41(1):167-176.
36 单秀琴, 张静, 张宝民, 等. 四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J]. 石油学报, 2016, 37(1): 17-29.
SHAN X Q, ZHANG J, ZHANG B M, et al. Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 17-29.
37 BIRKLE P, GARCÍA B M, PADRÓN C M M. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir,Gulf of Mexico.Part 1:Chemical evolution and waterrock interaction[J].Applied Geochemistry,2009,24(4):543-554.
38 EDMUNDS W M. Bromine geochemistry of British groundwaters[J]. Mineralogical Magazine, 1996, 60: 275-284.
39 孙大鹏, 李秉孝, 马育华, 等. 青海湖湖水的蒸发实验研究[J]. 盐湖研究, 1995, 3(2): 10-19.
SUN D P, LI B X, MA Y H, et al. An investigation on evaporating experiments for Qinghai lake water, China[J]. Journal of Salt Lake Science, 1995, 3(2): 10-19.
40 陈郁华. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律[J]. 地质学报, 1983(4): 379-390.
CHEN Y H. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25℃) of the Huanghai sea water[J]. Acta Geologica Sinica, 1983(4): 379-390.
41 FONTES J C, MATRAY J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1-4): 149-175.
42 KHARAKA Y K, HANOR J S. Deep fluids in the continents: I. Sedimentary basins[C]// HOLLAND H D TUREKIAN K K. Treatise on Geochemistry, 2003: 1-48.
43 RITTENHOUSE G. Bromine in oil-field waters and its use in determining possibilities of origin of these waters[J]. AAPG Bulletin, 1967, 51(12): 2430-2440.
44 VENGOSH A, STARINSKY A, KOLODNY Y, et al. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9): 799-802.
45 KHARAKA Y K, MAEST A S, CAROTHERS W W, et al. Geochemistry of metal-rich brines from central Mississippi Salt Dome Basin, U.S.A[J]. Applied Geochemistry, 1987, 2(5-6): 543-561.
46 LAND L S, MACPHERSON G L. Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin[J]. AAPG Bulletin, 1992, 76(9): 1344-1362.
47 CHAN L H, STARINSKY A, KATZ A. The behavior of lithium and its isotopes in oilfield brines: Evidence from the Heletz-Kokhav Field, Israel[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 615-623.
48 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M].北京:科学出版社, 1984:548.
LIU Y J, CAO L M, LI Z L, et al. Elemental Geochemistry[M]. Beijing: Science Press, 1984: 548.
49 MCINTOSH J C, WALTER L M, MARTINI A M. Pleistocene recharge to midcontinent basins: Effects on salinity structure and microbial gas generation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10): 1681-1700.
50 LEE DAVISSON M, CRISS R E. Na-Ca-Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 1996, 60(15): 2743-2752.
51 HOVER V C, PEACOR D R, WALTER L M. Relationship between organic matter and authigenic illite/smectite in Devonian black shales, Michigan and Illinois Basins, USA in Siliciclastic diagenesis and fluid flow: Concepts and applications[C]∥CROSSEY L,LOUCKS R,TOTTEN M W. SEPM (Society for Sedimentary Geology) Special Publication,1996:73-83.
52 HOVER V C, PEACOR D R, WALTER L M. STEM/AEM evidence for preservation of burial diagenetic fabrics in Devonian shales: Implications for fluid/rock interaction in cratonic basins (U.S.A.)[J]. Journal of Sedimentary Research, 1996, 66(3): 519-530.
53 KLUMP J, HEBBELN D, WEFER G. High concentrations of biogenic barium in Pacific sediments after Termination I-a signal of changes in productivity and deep water chemistry[J]. Marine Geology, 2001, 177(1): 1-11.
54 孙学通, 姚慧. 湖南应溪重晶石矿床地球化学特征及矿床成因[J]. 新疆地质, 2005, 23(1): 50-54.
SUN X T, YAO H. The genesis and geochemistry characteristics of Barite deposit, Yingxi Village, Xinhuang County, Hunan Province[J]. Xinjiang Geology, 2005, 23(1): 50-54.
55 OSSELIN F, NIGHTINGALE M, HEARN G, et al. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches[J]. Applied Geochemistry, 2018, 93: 20-29.
56 BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562-2569.
57 TINSLEY J M, MILLER E C, SABINS F L, et al. Study of factors causing annular gas flow following primary cementing[J]. Journal of Petroleum Technology, 1980, 32(8): 1427-1437.
58 Energy Information Administration. Drilling Sideways: A review of horizontal well technology and its domestic application[EB/OL].U.S. Department of Energy,1993. http://www.directionaltech.com/wp-content/uploads/2016/10/tr0565.pdf.
59 VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009.
60 GREGORY K, VIDIC R, DZOMBAK D. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2010,7(3):181-186.
61 熊颖, 刘雨舟, 刘友权, 等. 长宁—威远地区页岩气压裂返排液处理技术与应用[J]. 石油与天然气化工, 2016, 45(5): 51-55.
XIONG Y, LIU Y Z, LIU Y Q, et al. Recycling disposal technology and application of shale gas fracturing flowback fluid in Changning-Weiyuan area[J]. Chemical Engineering of Oil & Gas, 2016, 45(5): 51-55.
62 YU M, WEINTHAL E, PATIÑO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan Basin, China[J].Environmental Science & Technology,2016,50(6): 2837-2845.
63 张廷山, 赵国安, 陈桂康, 等. 我国页岩气革命面临的问题及对策思考[J]. 西南石油大学学报:社会科学版, 2016, 18(2): 1-8.
ZHANG T S, ZHAO G A, CHEN G K, et al. Shale gas revolution in China-problems and contermeasures[J]. Journal of Southwest Petroleum University:Social Sciences Edition, 2016, 18(2): 1-8.
64 LIU D, LI J, ZOU C N, et al. Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water[J]. Fuel, 2020, 272: 117621.
65 GAO J L, ZOU C N, LI W, et al. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality[J].Science of The Total Environment, 2020, 713: 136591.
[1] Guo-yi HU, Fei HE, Jing-kui MI, Yi-lin YUAN, Jin-hao GUO. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 319-333.
[2] Zhong-xi HAN, Yan-xia GOU, Jin LI, Shou-guo GE, Wen-nian TIAN, Heng HUANG. Content distribution characteristics and genetic analysis of mercury in the natural gas from Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 356-362.
[3] Yi HE, Xuan TANG, Yan-sheng SHAN, Guang-xiang LIU, Huang-chang XIE, Zi-jie MA. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding [J]. Natural Gas Geoscience, 2021, 32(2): 174-190.
[4] Zhuang-zhuang BAI, Wei YANG, Wu-ren XIE, Hui JIN, Sai-jun WU, Shi-yu MA, Qing-chao CAO. Sequence stratigraphy of Cambrian Xixiangchi Group and development characteristics of intra-platform bank in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 191-204.
[5] Xiao-fei SHANG, Sheng-xiang LONG, Tai-zhong DUAN. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs [J]. Natural Gas Geoscience, 2021, 32(2): 215-232.
[6] Hao-fei SUN, Bing LUO, Long WEN, Jin-xi WANG, Gang ZHOU, Hua-guo WEN, Fei HUO, Xin DAI, Chang-long HE. The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 233-247.
[7] Cheng-lin ZHANG, Sheng-xian ZHAO, Jian ZHANG, Cheng CHANG, Zi-qiang XIA, Lie-yan CAO, Chong TIAN, Jiang-Rong FENG, Yuan FANG, Yi ZHOU. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 248-261.
[8] Zhi-guo SHU, Li LIU, Bang LIANG, Ya-qiu LU, Ai-wei ZHENG, Han-yong BAO. Study on productivity evaluation method of shale gas well based on material balance principle [J]. Natural Gas Geoscience, 2021, 32(2): 262-267.
[9] Yu LU, Zhi-heng ZHAO, Hai-tao LI, Chang LIU, Hong-wen LUO, Hui XIAO. Study on the law of fracture propagation from multiple cluster limited entry perforation in shale reservoir [J]. Natural Gas Geoscience, 2021, 32(2): 268-273.
[10] Ying-ying XU, Zhi-ming HU, Xiang-gang DUAN, Jin CHANG, Yan-cong ZHANG. Shale gas improved five-zone composite productivity prediction model and its influencing factors [J]. Natural Gas Geoscience, 2021, 32(2): 274-287.
[11] Yu-jin WAN, Chang HE, Yu-ping SUN, Xiao-wei ZHANG. Well deployment strategy and enlightenment of Haynesville shale gas play [J]. Natural Gas Geoscience, 2021, 32(2): 288-297.
[12] Yi-li KANG, Dong-sheng YANG, Li-jun YOU, Xin-lei LI, Jia-jia BAI, Jia-xin SHAO, Tao ZENG. Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation [J]. Natural Gas Geoscience, 2021, 32(1): 86-97.
[13] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[14] Xiao-qi WU, Ying-bin CHEN, Chang-bo ZHAI, Xiao-jin ZHOU, Wen-hui LIU, Jun YANG, Xiao-bo SONG. Gas source and exploration direction of the Middle Triassic Leikoupo Formation in the Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1204-1215.
[15] Fu-sen XIAO, Teng-qiang WEI, Xiao-juan WANG, Xu GUAN, Chang-jiang WU, Hai-tao HONG. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1216-1224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[2] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[3] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[4] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .
[5] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[6] . THE APPLIANCE OF SIMULATION EXPERIMENT OF POOL-FORMING IN DEVELOPMENT OF BAIY USHAN RESERVOIR[J]. Natural Gas Geoscience, 2006, 17(2): 219 -222 .
[7] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[8] LI Feng-jie~1,2,WANG Duo-yun~1. THE HIGH-RESOLUTION SEQUENCE STRATIGRAPHIC FEATURE OF YANCHANG FORMATION IN XIFENG OILFIELD, ORDOS BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 339 -344 .
[9] ZHAO Meng-jun,SONG Yan,LIU Shao-bo,QIN Sheng-fei,HONG Feng,FU Guo-you, DA Jiang. THE PRIMARY STUDY ON THE FORMATION OF OIL AND GAS FIELDS IN THE FORELAND BASINS IN CENTRAL AND WESTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(4): 445 -451 .
[10] YAO Ya-ming,ZHOU Ji-jun,HE Ming-xi,FU Dai-guo,CHEN Jian-jun.
IDEAS ON THE PETROLEUM GEOLOGY CONDITIONS OF YANJI BASIN
[J]. Natural Gas Geoscience, 2006, 17(4): 463 -467 .