Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (5): 695-702.doi: 10.11764/j.issn.1672-1926.2020.12.001

Previous Articles     Next Articles

Mathematical diffusion-filtration model of gas in deep and tight gas reservoir and analysis of influencing factors

Wei-yao ZHU(),Yu-bo SHA,De-bin KONG(),Lian-zhi YANG   

  1. College of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2020-09-14 Revised:2020-11-02 Online:2021-05-10 Published:2021-04-27
  • Contact: De-bin KONG E-mail:weiyaook@sina.com;kongdb@ustb.edu.cn
  • Supported by:
    The Fundamental Research Funds for the Central Universities, China(FRF-TP-20-006A1)

Abstract:

Deep and tight gas reservoir is one of the hot spots now. Because of the large burial depth and low permeability the existing diffusion-filtration model cann’t accurately predict the concentration distribution of the reservoir, thus affects the formulation of development schema. ZHU(1989) put forward the concept of expansion diffusion coefficient based on the principle of diffusion originating from the change of chemical potential gradient, and established a Diffusion-filtration model considering pressure effect. However, this model does not consider the phenomena of gas collision and slippage with the pore surface in the process of tight gas reservoir flow. Based on the original model, the absorption term is added, and the collision slip phenomenon of gas in tight reservoir is considered in the motion equation, so that the new model can describe the flow law of gas in tight reservoir, and the influencing factors of the new model are analyzed. The results show that the expansion diffusion coefficient caused by pressure can increase production of gas more than 10%. The lower the permeability is, the greater the influence is. Molecular diffusion plays a major role in the whole production process, and the diffusion caused by pressure mainly affects the early stage of production and near well zone. The diffusion caused by pressure has a greater impact on low-permeability and high-pressure gas reservoirs.

Key words: Deep gas reservoir, Mass concentration, Concentration distribution, Diffusion-filtration model, Expansion diffusion coefficient, Molecular diffusion coefficient

CLC Number: 

  • TE32

Table 1

Basic parameters of tight sandstone gas physical experiment in Sulige Gas Field, Ordos Basin[15-17]"

参数取值
岩心密度/(kg/m32 500
岩心渗透率/(10-3 μm20.1
岩心孔隙度/%3
岩心压缩系数/Pa-11.45×10-10
岩心长度/m0.05
岩心直径/m0.025
模拟流体甲烷
气体密度/(g/m3716
Langmuir体积常数/(m3/kg)4.199×103
Langmuir压力常数/Pa4.55×106
气体扩散系数/(m2/s)12×10-7
气体膨胀扩散系数/[m2/(Pa·s)]5×10-5
气体黏度/(mPa·s)0.011

Table 2

Core simulation parameters of tight sandstone gas in Sulige Gas Field, Ordos Basin"

物理量取值
网格参数网格大小/m0.001
网格数量50
初始条件c(x,0)/%0
p(x,0)/Pa0
边界条件c(0,t)/%1
c(L,t)/%0
p(0,t)/Pa100 000
p(L,t)/Pa0

Fig.1

Simulation of variation character methane saturation in the core of filling test"

Fig.2

Basic schematic diagram of numerical model"

Table 3

One dimensional simulation parameters of tight sandstone gas in Sulige Gas Field, Ordos Basin"

参数取值
网格参数网格大小/m25
网格数量120
初始条件C(x,0)/(g/m3200 480
p(x,0)/MPa28
边界条件c(0,t0
p(0,t)/MPa22

Fig.3

Variation of formation methane concentration in different mining time"

Fig.4

Variation of formation methane concentration under different original formation pressures"

Fig.5

Variation of formation gas concentration under different permeability"

Fig.6

Variation of formation methane concentration under different bottom hole pressure"

Fig.7

Variation of formation methane concentration under different molecular diffusion coefficients"

1 林晨, 贾天让, 周市伟, 等. 颗粒煤甲烷吸附过程扩散特征[J]. 煤田地质与勘探, 2018,46(4):44-49.
LIN C,JIA T R,ZHOU S W,et al. Diffusion characteristics of methane adsorption process in granular coal[J]. Coal Geology & Exploration, 2018, 46(4):44-49.
2 NANDI S P, JR P L W. Activated diffusion of methane in coal[J]. Fuel, 1970,49(3):309-323.
3 BIELICKI R J, PERKINS J H, KISSELL F N. Methane Diffusion Parameters for Sized Coal Particles: A Measuring Apparatus and Some Preliminary Results[M]. Washington D C, USA:US Department of Interior, Bureau of Mines, 1972.
4 CUI X, BUSTIN R M, DIPPLE G. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3): 293-303.
5 袁军伟. 颗粒煤瓦斯扩散时效特性研究[D]. 北京:中国矿业大学(北京), 2014.
YUAN J W. Study on Time-related Characteristics of Gas Diffusion from Particles Coal[D].Beijing:China University of Min-ing and Technology(Beijing),2014.
6 刘彦伟. 煤粒瓦斯放散规律、机理与动力学模型研究[D]. 焦作:河南理工大学, 2011.
LIU Y W.Study on Gas Emission Rules,Mechanism and Dynamic Model from Coal Particle[D].Jiaozuo:Henan Polytechnic University,2011.
7 李志强, 王司建, 刘彦伟, 等. 基于动扩散系数新扩散模型的构造煤瓦斯扩散机理[J]. 中国矿业大学学报, 2015, 44(5): 836-842.
LI Z Q, WANG S J, LIU Y W, et al. Mechanism of gas diffusion in tectonic coal based on a diffusion model with dynamic diffusion coefficient[J]. Journal of China University of Mining & Technology, 2015, 44(5): 836-842.
8 KIM C, JANG H, LEE J. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale[J]. Journal of Petroleum Science and Engineering, 2015, 133: 226-237.
9 MENG Y, LI Z. Experimental study on diffusion property of methane gas in coal and its influencing factors[J]. Fuel, 2016, 185: 219-228.
10 朱维耀. 考虑压力作用的气体或气体混合物的扩散渗流方程[J]. 石油勘探与开发, 1989,16(6):84-87.
ZHU W Y. Diffusion-filtration of a gas or a gas-mixture flow under pressure[J]. Petroleum Exploration & Development, 1989,16(6):84-87.
11 DENG J, ZHU W, MA Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well[J]. Fuel, 2014, 124: 232-240.
12 朱维耀, 马千, 邓佳, 等. 纳微米级孔隙气体流动数学模型及应用[J]. 北京科技大学学报, 2014, 36(6):709-715.
ZHU W Y,MA Q, DENG J,et al. Mathematical model and application of gas flow in nano-micron pores[J]. Journal of Beijing University of Science and Technology, 2014, 36(6):709-715.
13 程林松. 渗流力学[M]. 北京:石油工业出版社, 2011
CHENG L S. Fluid Flow in Porous Medium[M]. Beijing: Petroleum Industry Press, 2011.
14 厄特金.实用油藏模拟技术[M].北京:石油工业出版社,2004
ERTEKIN T.Applied Reservoir Simulation[M]. Beijing: Petroleum Industry Press, 2011.
15 高瑞民. 核磁共振测试天然气藏可动气体饱和度[J]. 天然气工业, 2006, 26(6):33-35.
GAO R M. NMR testing of mobile gas saturation of gas reservoirs[J]. Natural Gas Industry, 2006, 26(6):33-35.
16 赵靖舟, 付金华, 姚泾利, 等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J]. 石油学报, 2012,33(S1):37-52.
ZHAO J Z,FU J H,YAO J L, et al. Quasi-continuous accumulation model of large tight sandstone Gas Field in Ordos Basin[J]. Acta Petrolei Sinica, 2012,33(S1):37-52.
17 刘光启, 马连湘, 项曙光. 化学化工物性数据手册:有机卷[M].北京:化学工业出版社, 2002.
LIU G Q,MA L X,XIANG S G. Data Volume,Chemical and Physical:Organic[M]. Beijing:Chemical Industry Press,2002.
18 GB/T2679-2011.天然气藏分类[S].廊坊:中国石油勘探开发研究院廊坊分院,2011.
GB/T2679-2011, The Classification of Natural Gas Pool[S]. Langfang:Research Institute of Petroleum Exploration & Devrlopment,2011.
19 刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4):458-462.
LIU J G,WANG H T,NIE Y F. Fractal model for predicting effective diffusion coefficient of solute in porous media[J]. Advances in Water Science, 2004, 15(4):458-462.
20 宁智, 孔祥谦, 王金忠. 多孔介质质扩散系数的参数估计方法及测定方法[J]. 计量学报, 1993,14(1):8-14.
NING Z,KONG X Q,WANG J Z.A method of parameter estimation and measurement for the determination of the moisture diffusion coefficient of porous materials[J]. Acta Metrologica Sinica, 1993,14(1):8-14.
21 查传钰, 吕钢. 多孔介质中流体的扩散系数及其测量方法[J]. 地球物理学进展,1998,13(2):60-72.
ZHA C Y,LV G. Diffusion coefficient and measurement method of fluid in the porous media[J]. Progress in Geophysics,1998,13(2):60-72.
[1] LIU Zhen-xing ;JIANG Sen-bao ;LIU Cong ; JIN Xiu-ju . Physical Properties and Control Factors in Qiaokou Deep Gas Reservoir [J]. Natural Gas Geoscience, 2008, 19(05): 593-596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie,LIU Wen-hui,QIN Jian-zhong,ZHANG Jun. MANTLE DERIVED GAS RESERVOIR AND ITS FORMING RULES IN EASTERN CHINA[J]. Natural Gas Geoscience, 2007, 18(1): 19 -26 .
[2] . THE GEOLOGICAL CHARACTERISTICS OF QIANMIQIAO BURIED[J]. Natural Gas Geoscience, 2003, 14(4): 264 -266 .
[3] DONG Wei-Hong, YANG Shen. Factors Affecting Production Decline Performance and Production Forecasting[J]. Natural Gas Geoscience, 2009, 20(3): 411 -415 .
[4] LI Yan-Li. Calculation Methods of Shale Gas Reserves[J]. Natural Gas Geoscience, 2009, 20(3): 466 -470 .
[5] JIANG Hou-Shun, ZHANG Yi. Method of Product Prediction for Low Permeability Petroleum Reservoir at Gao 5 Block[J]. Natural Gas Geoscience, 2010, 21(3): 385 -388 .
[6] YU Hong-Min, ZUO Jing-Luan, ZHANG Qi. Prediction of Formation Conditions for Gas Well Hydrate[J]. Natural Gas Geoscience, 2010, 21(3): 522 -527 .
[7] Zhang Wei-dong,Guo Min,Jiang Zai-xing. Parameters and Method for Shale Gas Reservoir Evaluation[J]. Natural Gas Geoscience, 2011, 22(6): 1093 -1099 .
[8] Liu Xing-wang,Zheng Jian-jing,Yang Xin,Sun Guo-qiang,Su Long,Wang Ya-dong. Sedimentology Revealment to Meso-Cenzoic Tectonic Movement Process of Altun Strike-slip Fault[J]. Natural Gas Geoscience, 2012, 23(1): 119 -128 .
[9] GUO Xuan, PAN Jian-Guo, TAN Kai-Dun, WANG Bin. Application of Seismic Sedimentology in Triassic Baikouquan  Formation of Western Mahu Slope of Junggar Basin[J]. Natural Gas Geoscience, 2012, 23(2): 359 -364 .
[10] LI Jin,WANG Xin-hai,ZHU Li-yao,LIU Jin-xia. A Study of Comprehensive Discriminant Methodsof the Source of Water-yielding in Gas Reservoirs[J]. Natural Gas Geoscience, 2012, 23(6): 1185 -1190 .