Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (2): 233-247.doi: 10.11764/j.issn.1672-1926.2020.11.011

Previous Articles     Next Articles

The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin

Hao-fei SUN1,2(),Bing LUO2,Long WEN2,Jin-xi WANG3,Gang ZHOU2,Hua-guo WEN1(),Fei HUO1,Xin DAI2,Chang-long HE2   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology),Chengdu 610059,China
    2.Exploration and Development Research Institute,PetroChina Southwest Oil & Gasfield Company,Chengdu 610041,China
    3.Tight Oil and Gas Exploration and Development Project Department,PetroChina Southwest Oil & Gasfield Company,Chengdu 610051,China
  • Received:2020-08-24 Revised:2020-11-04 Online:2021-02-10 Published:2021-03-10
  • Contact: Hua-guo WEN E-mail:sunhaofei@petrochina.com.cn;wenhuaguo08@cdut.cn
  • Supported by:
    The Major Scientific and Technological Projects of PetroChina(2016E-0601);The China National Science and Technology Major Project(2016ZX05007-004-005)

Abstract:

At present, there are no reports about the organic-rich shale and its sedimentary environment of the Leikoupo Formation in Sichuan Basin. To this end, based on the latest drilling and coring data in the basin, through the observation of cores and thin sections, combined with X-ray diffraction of full-rock mineral analysis and trace element geochemical index identification, the organic-rich shale petrological characteristics of the Leikoupo Formation were developed. The study analyzed the paleoenvironment of organic-rich shale sediments, discussed the main controlling factors of organic matter enrichment, and pointed out the exploration potential of the sub-salt field of the Leikoupo Formation. The results show that: (1)The organic-rich shale in the Leikoupo Formation in the Sichuan Basin can be divided into two types of shale facies, clayey calcareous mixed shale and calcareous shale, with an organic carbon content of 0.58%-1.08% and RO of 2.36%-2.40%; (2) Sr/Cu, Sr/Ba, B/Ga, V/(V+Ni), paleo-oxygen phase substitution coefficient and other indicators indicate that the Leikoupo Formation organic-rich shale is generally in a dry-hot, salt-water, and anoxic environment; (3)The evaluation of hydrocarbon generation potential shows that the clayey calcareous mixed shale in the sample is the best source rock, calcareous shale and limestone are the good or better source rocks. High paleo-productivity and anoxic environment are important conditions for the enrichment and preservation of organic matter; (4)The types of reservoir-forming combinations that may be formed by the organic-rich shale in the Leikoupo Formation in Sichuan Basin include three types: self-generation and self-storage type, side-generation and side-storage type, and lower generation and upper-storage type. It is concluded that the Meishan-Nanchong-Bazhong and Ya'an-Hongya areas are the most favorable areas for sub-salt exploration of the Leikoupo Formation in Sichuan Basin, Suining-Guang'an area is the most favorable area for salt exploration in the Leikoupo Formation.

Key words: Sichuan Basin, Leikoupo Formation, Source rock, Sedimentary environment, Hydrocarbon generation potential, Shale gas

CLC Number: 

  • TE132.2

Fig.1

Sedimentary pattern of Middle Triassic Leikoupo Period(a) and lithology column of Well CT1(b) in Sichuan Basin"

Fig.2

Lithofacies division map of organic-rich shale in Lei-koupo Formation in Sichuan Basin(according to Ref.[13])"

Fig.3

Lithology characteristics of organic-rich shale of Leikoupo Formation in Sichuan Basin"

Fig.4

Stratigraphic comparison of the third member of Leikoupo Formation in Sichuan Basin"

Fig.5

Contour map of the thickness of organic-rich shale in Leikoupo Formation in Sichuan Basin"

Table 1

Organic carbon and vitrinite reflectance data of Well CT1"

序号岩性TOC/%RO/%
平均值0.742.39
1钙质页岩0.602.36
2钙质页岩0.812.40
3钙质页岩0.58
4灰岩0.80
5灰岩0.49
6灰岩0.572.41
7灰岩0.65
8钙质页岩0.96
9黏土质钙质混合页岩0.83
10黏土质钙质混合页岩1.08

Table 2

Evaluation criteria of organic carbon abundance of marine source rocks in over-mature areas"

烃源岩级别泥质岩有机碳丰度/%碳酸盐岩有机碳丰度/%
成熟阶段高过成熟阶段成熟阶段高过成熟阶段
非烃源岩<0.4<0.16<0.1<0.04
差烃源岩0.4~0.60.16~0.240.1~0.30.04~0.12
中等烃源岩0.6~1.00.24~0.40.3~0.740.12~0.28
较好烃源岩1.0~2.00.4~0.80.74~1.70.28~0.68
好烃源岩>2.0>0.8>1.7>0.68

Table 3

Analytical results and calculation results of major quantities and trace elements of Leikoupo Formation samples from Well CT1"

样品测试结果/(μg/g)计算结果
BVNiCuGaSrBaThUTh/UV/ (V+Ni)Sr/BaB/GaSr/Cu气候指数C古氧相替代系数Y1古生产力替代系数Y2
平均164.1558.3716.0120.828.33336.52612.633.883.791.001.041.5917.8128.160.2137.4534.93
CT1-1260.9076.9821.4023.0710.82241.90160.744.663.281.420.681.5024.1110.490.3648.0542.64
CT1-2322.8091.8923.7524.1012.83230.55188.905.053.431.471.041.2225.169.570.3757.0147.10
CT1-3168.1264.9315.6417.638.48278.18513.213.373.061.101.580.5419.8315.780.1540.7432.08
CT1-445.4225.426.8922.513.31354.09317.861.643.400.481.181.1113.7215.730.0717.3223.52
CT1-520.7414.674.574.841.74341.6754.921.122.020.550.456.2211.9470.580.0810.0710.32
CT1-655.5728.127.268.463.53374.15212.032.143.630.590.281.7615.7644.200.0919.3915.88
CT1-7323.6893.7026.4529.7014.81239.76232.167.104.981.430.891.0321.858.070.3658.8953.34
CT1-8251.0278.4321.7625.1011.89272.11262.145.624.801.171.811.0421.1110.840.2949.7043.43
CT1-929.1121.566.5817.862.34374.99100.001.312.810.470.183.7512.4321.000.0914.6319.92
CT1-10296.53112.4736.6437.6718.67196.58244.158.695.501.580.700.8115.885.220.5470.4167.73
CT1-11340.91124.7738.5241.4721.37156.41285.969.856.061.622.140.5515.953.770.5678.2274.09
CT1-1232.2219.864.928.902.42331.39175.501.482.450.600.801.8913.3037.220.0713.7213.01
CT1-1334.0120.066.2514.172.48354.69177.301.452.500.580.192.0013.7425.040.0713.8827.68
CT1-14349.4198.0429.9032.7616.41225.74249.567.164.281.670.880.9021.296.890.3961.1263.67
CT1-15280.0681.3119.8226.5911.12308.67164.654.653.411.360.801.8725.1811.610.2950.7146.76
CT1-16241.0382.1219.4020.9912.98342.18823.655.405.301.021.230.4218.5716.300.1353.0037.54
CT1-17108.5547.2313.3011.277.30505.63104.973.683.970.931.294.8214.8844.870.1430.6124.28
CT1-1830.0523.297.0820.922.28325.97155.411.263.150.400.532.1013.1815.580.1016.1524.24
CT1-19101.1637.2611.0618.545.64343.77841.103.483.461.011.750.4117.9518.550.0724.8027.76
CT1-209.8510.283.984.080.99880.73501.330.572.140.270.131.769.98215.710.027.608.48
CT1-21207.7572.8820.4420.9610.75268.56212.124.203.511.191.171.2719.3312.810.2845.9340.79
CT1-2232.5341.855.8321.691.72344.254 524.061.258.970.141.380.0818.9115.870.0131.2922.48
CT1-2324.2724.515.3412.091.79593.294 404.741.651.690.980.290.1313.5549.080.0116.5915.85
CT1-24243.8078.6021.1627.2510.86264.15203.324.983.651.370.711.3022.459.690.3050.0244.05
CT1-25294.2388.9722.3827.8611.70263.65205.965.223.301.583.981.2825.159.460.3256.3846.51

Table 4

Identification index of trace elements in sedimentary paleoenvironment of Leikoupo Formation samples from Well CT1"

判别类型沉积环境判别参数判别标准范围值平均值沉积环境资料来源
古气候Sr/Cu>10干热气候3.77~215.7128.16干热气候文献[20]
1~10温湿气候
气候指数(C<0.2干旱环境0.01~0.560.21半干旱环境文献[22]
0.2~0.4半干旱环境
0.4~0.6半潮湿环境
0.6~0.8潮湿环境
古盐度B/Ga>5咸水9.98~25.1817.81咸水文献[24]
3~5半咸水
<3淡水
古氧相V/(V+Ni)>0.6缺氧环境0.13~3.981.04缺氧环境文献[29]
0.45~0.6贫氧环境
<0.45富氧环境
古氧相代替系数(Y1)<10.5富氧环境7.60~78.2237.45贫氧—缺氧环境文献[30]
10.5~50贫氧环境
50~100缺氧环境
>100无氧环境

Fig.6

Evaluation of paleooxygen facies coefficient(a) and paleoproductivity coefficient(b) of Leikoupo Formation samples from Well CT1 (according to Ref.[30])"

Fig. 7

Organic-rich shale element signs and paleoenvironmental characteristics of Leikoupo Formation in Sichuan Basin"

Fig. 8

The sub-salt and supra-salt accumulation model of the Leikoupo Formation in the Sichuan Basin"

Fig.9

Sub-salt and upper-salt exploration favorable zones of Leikoupo Formation in Sichuan Basin"

Table 5

The sub-salt and supra-salt pools and favorable exploration zones of Leikoupo Formation in Sichuan Basin"

区域眉山—南充—巴中雅安—洪雅遂宁—广安
领域盐下盐下盐上
成藏组合自生自储旁生侧储下生上储
沉积相蒸发潟湖台缘滩台内滩
岩性黏土质钙质混合页岩、钙质页岩砂屑白云岩、粉晶白云岩砂屑白云岩、粉晶白云岩
厚度/m6~60(25)8~21(15)1.8~26(17)
孔隙度/%0.96~4.93(2.04)3.6~5.9(4.8)3.0~15.29(8.2)
渗透率/(10-3 μm20.72~39.48(20.10)0.13~14.21(7.76)0.000 1~134.23(4.32)
主要储集空间纳米孔、粒间孔、晶间孔、微缝溶蚀孔、晶间孔溶蚀孔、晶间孔
分布面积/km216 0003 0003 500
预计资源量/(108 m311 0003 7003 600

Fig.10

Photograph of the microscopic characteristics of the reservoir space of Leikoupo Formation in Sichuan Basin"

1 JONES B F,EUGSTER H P,RETTIG S L. Hydrochemistry of the Lake Magadi Basin,Kenya[J]. Geochimica et Cosmochimica Acta,1977,41(1):53-72.
2 BONYTHON C W,MASON B. The filling and drying of lake eyre[J]. Geographical Journal,1953,119(3):321-330.
3 郑德顺,李明龙,蔡进功,等. 东营凹陷深层膏盐岩分布及其对烃源岩热演化的影响[J]. 石油地质与工程,2011,25(4):1-3.
ZHENG D S,LI M L,CAI J G,et al. Effect of deep gypsum on thermal evolution of source rock and its distribution in Dongying Sag[J]. Petroleum Geology and Engineering,2011,25(4):1-3.
4 张永生,杨玉卿,漆智先,等. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境[J]. 古地理学报,2003,5(1):29-35.
ZHANG Y S,YANG Y Q,QI Z X,et al. Sedimentary characteristics and environments of the salt-bearing series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin[J]. Journal of Palaeogeography,2003,5(1):29-35.
5 金强,查明. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学,2000,35(4):465-473.
JIN Q,ZHA M. Co-sedimentation of Tertiary evaporites and oil source rocks in the western Qaidam Basin[J]. Scientia Geologica Sinica,2000,35(4): 465-473.
6 马奎,胡素云,王铜山,等. 膏盐岩对碳酸盐层系油气成藏的影响及勘探领域分析[J]. 地质科技情报,2016,67(2): 174-181.
MA K, HU S Y, WANG T S, et al. Effect of gypsum rock on the hydrocarbon accumulation in carbonate layers and analysis of exploration field[J]. Geological Science and Technology Information,2016,67(2):174-181.
7 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.
ZHANG S C,ZHANG B M,BIAN L Z,et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers,2005,12(3):39-48.
8 付锁堂,张道伟,薛建勤,等. 柴达木盆地致密油形成的地质条件及勘探潜力分析[J]. 沉积学报,2013,31(4):672-682.
FU S T,ZHANG D W,XUE J Q,et al. Exploration potential and geological conditions of tight oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica,2013,31(4):672-682.
9 张水昌,张保民,王飞宇,等. 塔里木盆地两套海相有效烃源层—Ⅰ.有机质性质、发育环境及控制因素[J]. 自然科学进展,2001,11(3):261-268.
ZHANG S C,ZHANG B M,WANG F Y,et al. Two sets of marine efficacious source rock in Tarim Basin-Organic properties,formation environment and their controlling factors[J]. Progress in Natural Science,2011,11(3):261-268.
10 李凌,谭秀成,周素彦,等. 四川盆地雷口坡组层序岩相古地理[J]. 西南石油大学学报:自然科学版,2012,34(4):13-22.
LI L,TAN X C,ZHOU S Y,et al. Sequence lithofacies paleography of Leikoupo Formation Sichuan Basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(4):13-22.
11 刘树根,孙玮,宋金民,等. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学,2019,30(2):151-167.
LIU S G,SUN W,SONG J M,et al. The key geological problems of natural gas exploration in the Middle Triassic Leikoupo Formation in Sichuan Basin[J]. Natural Gas Geoscience,2019,30(2):151-167.
12 李凌,谭秀成,邹春,等. 四川盆地雷口坡组膏盐岩成因及膏盐盆迁移演化与构造意义[J]. 地质学报,2012,86(2):316-324.
LI L,TAN X C,ZOU C,et al. Origin of the Leikoupo Formation gypsum-salt and migration evolution of the gypsum-salt pot in the Sichuan Basin and their structural significance[J]. Acta Geologica Sinica,2012,86(2):316-324.
13 王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119-133.
WANG Y M,WANG S F,DONG D Z,et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Earth Science Frontiers,2016,23(1):119-133.
14 陈建平,梁狄刚,张水昌,等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报,2012,86(7):1132-1142.
CHEN J P,LIANG D G,ZHANG S C,et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s paleozoic marine source rocks[J]. Acta Geologica Sinica,2012,86(7):1132-1142.
15 戴鸿鸣,黄东,刘旭宁,等. 蜀南西南地区海相烃源岩特征与评价[J]. 天然气地球科学,2008,19(4):503-508.
DAI H M,HUANG D,LIU X N,et al. Characteristics and evaluation of marine source rock in southwestern Shunan[J]. Natural Gas Geoscience,2008,19(4):503-508.
16 郑一丁,雷裕红,张立强,等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学,2015,26(7):1395-1404.
ZHENG Y D,LEI Y H,ZHANG L Q,et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan Shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015,26(7):1395-1404.
17 TAYLOR S R,MCLENNAN S M. The Continental Crust: Its Composition and Evolution,An Examination of the Eochemical Record Preserved in Sedimentary Rocks[M]. London: Blackwell Scientific Publication,1985.
18 MCLENNAN S M,HEMMING S,MCDANIEL D K,et al. Geochemical approaches to sedimentation,provenanceand tectonics[J]. Geological Society of America Special Papers,1993,284:21-40.
19 王峰,刘玄春,邓秀芹,等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,2017,35(6):1265-1273.
WANG F,LIU X C,DENG X Q,et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica,2017,35(6):1265-1273.
20 刘刚,周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.
LIU G,ZHOU D S. Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment,2007,29(3):307-310,314.
21 GETANEH W. Geochemistry provenance and depositional tectonic setting of the Adigrat sandstone northern Ethiopia[J]. Journal of African Earth Sciences,2002,35(2):185-198.
22 CAO J,WU M,CHEN Y,et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin,northwest China[J]. Chemie der Erde,2012,72(3):245-252.
23 李成凤,肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度[J]. 沉积学报,1988,6(4):100-107.
LI C F,XIAO J F. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin,Shengli Oilfield[J]. Acta Sedimentologica Sinica,1988,6(4):100-107.
24 张茜,王剑,余谦,等.川西南构造复杂区龙马溪组泥页岩地球化学特征及古环境[J]. 新疆石油地质,2017,38(4):399-406.
ZHANG Q,WANG J,YU Q,et al. Geochemical features and paleoenvironment of shales in Longmaxi Formation of complicated structure area southwestern Sichuan Basin[J]. Xinjiang Petroleum Geology,2017,38(4):399-406.
25 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120.
WEN H G,ZHENG R C,TANG F,et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan Region, Ordos Basin[J]. Journal of Mineralogy and Petrology,2008,28(1):114-120.
26 WALKER C T,PRICE N B. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG Bulleting,1963,47(5):833-841.
27 ADAMS T D,HAYNES J R,WALKER C T. Boron in Holocene illites of the dovey estuary wales and its relation ship to paleosalinity in cyclothems[J].Sedimentology,1965,4:189-195.
28 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3):27-34.
WANG S F,DONG D Z,WANG Y M,et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology,2014,19(3):27-34.
29 张春明,张维生,郭英海. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘,2012,19(1):136-145.
ZHANG C M,ZHANG W S,GUO Y H. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers,2012,19(1):136-145.
30 陈慧,解习农,李红敬,等. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J]. 古地理学报,2010,12(3):76-85.
CHEN H,XIE X N,LI H J,et al. Evaluation of the Permian marine hydrocarbon source rocks at Shangsi section in Sichuan Province using multi-proxies of paleoproductivity and paleoredox[J]. Journal of Palaeogeography,2010,12(3):76-85.
31 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.
LI Y F,SHAO D Y,LV H G,et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(12):1470-1483.
32 郑宇龙,牟传龙,王秀平. 四川盆地南缘五峰组—龙马溪组沉积地球化学及有机质富集模式——以叙永地区田林剖面为例[J]. 地球科学与环境学报,2019,41(5):541-560.
ZHENG Y L,MOU C L,WANG X P. Sedimentary geochemistry and patterns of organic matter enrichment of Wufeng-Longmaxi formations in the southern margin of Sichuan Basin,China: A case study of Tianlin Profile in Xuyong area[J]. Journal of Earth Sciences and Environment,2019,41(5):541-560.
33 李双建,肖开华,沃玉进,等. 南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J]. 沉积学报,2008,26(5):872-880.
LI S J,XIAO K H,WO Y J,et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence,South China[J]. Acta Sedimentologica Sinica,2008,26(5):872-880.
34 朱光有,金强,戴金星,等. 东营凹陷沙四中亚段盐湖相烃源岩研究[J]. 高校地质学报,2004,10(2):257-266.
ZHU G Y,JIN Q,DAI J X,et al. Investigation on the salt lake source rocks for Middle Shasi Column of Dongying Depression[J]. Geological Journal of China Universities,2004,10(2):257-266.
35 陈湘飞. 东濮凹陷盐湖相含膏盐岩层系成烃与成藏效应[D]. 北京:中国石油大学(北京),2017.
CHEN X F. Hydrocarbon Generation and Accumulation Effect of Saline Lacustrine Strata Bearing Gypsum-salt Rock in Dongpu Sag Bohai Bay Basin[D].Beijing: China University of Petroleum(Beijing),2017.
36 林良彪,陈洪德,淡永,等. 四川盆地中寒武统膏盐岩特征与成因分析[J]. 吉林大学学报:地球科学版,2012,42(S2):95-103.
LIN L B,CHEN H D,DAN Y,et al. Characteristics and genesis of Middle Cambrian gypsum rock in Sichuan Basin[J]. Journal of Jilin University:Earth Science Edition,2012,42(S2):95-103.
37 刘传联,徐金鲤,汪品先.藻类勃发—湖相油源岩形成的一种重要机制[J]. 地质论评,2001,47(2):207-210.
LIU C L,XU J L,WANG P X. Algal blooms:The primary mechanism in the formationof lacustrine petroleum source rocks[J]. Geological Review,2001,47(2):207-210.
38 王文楷,许国明,宋晓波,等. 四川盆地雷口坡组膏盐岩成因及其油气地质意义[J]. 成都理工大学学报:自然科学版,2017,44(6):697-707.
WANG W K,XU G M,SONG X B,et al. Genesis of gypsum-salt in the Leikoupo Formation and its hydrocarbon significance in the Sichuan Basin,China[J]. Journal of Chengdu University of Technology: Science & Technology Edition,2017,44(6):697-707.
39 金强,查明. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学,2000,35(4):465-473.
JIN Q,ZHA M. Co-sedimentation of tertiary evaporites and oil source rocks in the western Qaidam Basin[J]. Scientia Geologica Sinica,2000,35(4):465-473.
40 陈科洛,张廷山,梁兴,等. 滇黔北坳陷五峰组—龙马溪组下段页岩岩相与沉积环境[J]. 沉积学报,2018,36(4):743-755.
CHEN K L,ZHANG T S,LIANG X,et al. Analysis of shale lithofacies and sedimentary environment on Wufeng Formation Lower Longmaxi Formation in Dianqianbei Depression[J]. Acta Sedimentologica Sinica,2018,36(4):743-755.
41 牟传龙,王秀平,王启宇,等. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系[J]. 古地理学报,2016,18(3):457-472.
MOU C L,WANG X P,WANG Q Y,et al. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography,2016,18(3):457-472.
42 许国明,宋晓波,冯霞,等.川西地区中三叠统雷口坡组天然气勘探潜力[J]. 天然气工业,2013,33(8):8-14.
XU G M,SONG X B,FENG X,et al. Gas potential of the Middle Triassic Leikoupo Fm in the western Sichuan Basin[J]. Natural Gas Industry,2013,33(8):8-14.
43 王彦青,陈迎宾,胡烨,等. 蒸发环境烃源岩生烃能力探讨——以川西坳陷雷口坡组为例[J].断块油气田,2018,25(4):426-430.
WANG Y Q,CHEN Y B,HU Y,et al. Discussion on hydrocarbon generation ability of evaporation environment: A case study of Leikoupo Formation in west Sichuan Depression[J]. Fault-Block Oil & Gas Field,2018,25(4):426-430.
44 杨克明. 四川盆地西部中三叠统雷口坡组烃源岩生烃潜力分析[J]. 石油实验地质,2016,38(3):366-374.
YANG K M. Hydrocarbon potential of source rocks in the Middle Triassic Leikoupo Formation in the western Sichuan Depression[J]. Petroleum Geology and Experiment,2016,38(3):366-374.
[1] Ronghui FANG, Xiaoqiang LIU, Cong ZHANG, Meijun LI, Xianghua XIA, Zhilong HUANG, Chengyu YANG, Qiuya HAN, Hanqin TANG. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province [J]. Natural Gas Geoscience, 2022, 33(1): 138-152.
[2] Hu ZHAO, Yidan FENG, Yi WANG, Shilin LI, Liangjun XU, Zhixin DI, Binrui ZHU. Seismic geological characteristics and exploration prospect of tight sandstone in Lianggaoshan Formation of Gaofengchang block, eastern Sichuan Basin, China [J]. Natural Gas Geoscience, 2022, 33(1): 153-167.
[3] Yunyan NI, Limiao YAO, Jianli SUI, Jianping CHEN. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water [J]. Natural Gas Geoscience, 2022, 33(1): 78-91.
[4] Jing XIE, Jianzhou CHEN, Yongfeng XU, Guocang WANG, Jin WANG, Qing LI, Qiwei WANG. Logging evaluation of Triassic Babaoshan Formation shale reservoir in East Kunlun area of northern Qinghai-Tibet Plateau [J]. Natural Gas Geoscience, 2021, 32(9): 1285-1296.
[5] Shitan NING, Peng XIA, Fang HAO, Jinqiang TIAN, Yi ZHONG, Niuniu ZOU, Yong FU. Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province [J]. Natural Gas Geoscience, 2021, 32(9): 1297-1307.
[6] Shiyu MA, Wuren XIE, Wei YANG, Shufu DUAN, Zecheng WANG, Saijun WU, Nan SU, Cuiguo HAO, Xiaodan WANG. Lithofacies and paleogeography of the lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(9): 1324-1333.
[7] Yading LI, Youlian CHEN, Wei YAN, Ruixue DAI, Cheng XI, Yuan HE. Research on sedimentary evolution characteristics of Cambrian Canglangpu Formation, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1334-1346.
[8] Rangbin LI, Jinbao DUAN, Lei PAN, Hong LI. Genetic mechanism and main controlling factors of the Middle Permian Maokou Formation dolomite reservoirs in the eastern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1347-1357.
[9] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[10] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[11] Hailiang LIU, Sibing LIU, Dong ZHOU, Wen LIU, Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[12] Zengye XIE, Chunlong YANG, Jian LI, Lu ZHANG, Jianying GUO, Hui JIN, Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[13] Shengli XI, Wuling MO, Xinshe LIU, Lei ZHANG, Jian LI, Zhengliang HUANG, Min WANG, Chunlin ZHANG, Qiuying ZHU, Yu YAN, Nengwu ZHOU. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1 [J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
[14] Linghui CAI, Ye YU, Jianhua GUO, Yanran HUANG, Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province [J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
[15] Ye-tong WANG, Guo-qiang SUN, Shun-cun ZHANG, Bo CHEN, Wen-jun ZHU, Yun JIANG. Characteristics and genesis of carbonate cement in abdomen sandstone in northern margin of Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1037-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[2] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[3] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .
[4] . [J]. Natural Gas Geoscience, 0, (): 9 .
[5] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .
[6] SHI Li-zhi;LIN Tie-fen;WANG Zhen-liang;WANG Zhuo-zhuo;YAO Yong. RESEARCH ON THE MIGRATION AND ACCUMULATION SYSTEMS OF NATURAL GAS AND HYDROCARBON MIGRATION OF THE LOWER CRETACEOUS STRATA IN KUQA DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 78 -83 .
[7] WANG Ru. GEOCHEMICAL CHARACTERISTICS AND HYDROCARBON RESERVOIR FORMING PROCESURE ANALYSIS OF TWO TERMS OF RESERVOIR FORMING IN SHENGTUO OI LFIELD[J]. Natural Gas Geoscience, 2006, 17(1): 133 -136 .
[8] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[9] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[10] ZHU Zhi-min~1,SHEN Bing~1,YAN Jian-fei~2. DISCUSS ON INORGANIC NATURAL GAS IN THE FUXIN BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 418 -421 .