Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (1): 38-46.doi: 10.11764/j.issn.1672-1926.2020.11.001

Previous Articles     Next Articles

Orgaofaices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance

Yong-qian CUI1(),Fei-yu WANG2(),Chuan-bao ZHANG1,Wei-ping FENG3,Feng-xiang HOU1,Xue-feng MA1,Ying MA1   

  1. 1.PetroChina Huabei Oilfield Company,Renqiu 062552,China
    2.College of Geosciences,China University of Petroleum,Beijing 102200,China
    3.Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China
  • Received:2020-05-18 Revised:2020-10-20 Online:2021-01-10 Published:2021-02-04
  • Contact: Fei-yu WANG E-mail:wty_cyq@petrochina.com.cn;fywang@cup.edu.cn
  • Supported by:
    The Major Science and Technology Projects of PetroChina(2014E-35);The China National Science & Technology Major Project(2017ZX05008-006-002-005)

Abstract:

The Es4 source rock is the main hydrocarbon source for the hydrocarbon in the deep reservoirs in Baxian Sag, Jizhong Depression, Bohai Bay Basin, and quantitative description of Es4 source rock is useful for understanding the hydrocarbon generation and accumulation in the deep basin. The Es4 source rock contains organofacies C, D/E and F, of which the thickness of organofacies C is relatively thin, generally less than 40 m, and is between 50 m and 250 m for organofacies D/E. The maximum RO of the drilled Es4 source rock is 1.27%, which is in the late stage of maturity. The kinetic parameters for three organofacies source rock have been obtained from gold tube pyrolysis simulation. The result indicated that organofacies C, D/E and F source rock entered into the mature level in turn, but the transformation will reach about 90% for the organofacies at 150 ℃. The hydrocarbon generation potential is still significant for organofacies D/E and F, and is mainly dominated by condensate and wet gas.

Key words: Baxian Sag, Gas-prone Source rock, Hydrocarbon in deep formation, Natural gas, Condensate

CLC Number: 

  • TE121.1+5

Fig.1

Tectonic units and locations of wells in the Baxian Sag"

Fig.2

Variation of TOC with depth for source rock in the Baxian Sag"

Fig3

Sedimentary and organic geochemistry characteristics in Well XL1"

Fig.4

Variation of TOC for Es4 source rock in the Baxian Sag"

Fig.5

The thickness of organic-facies C (TOC>2%) and D/E(TOC =1%-2%) source rock of Es4 in the Baixian Sag"

Fig.6

The relationship between Ro with depth for Es3 and Es4 source rock in Baxian Sag"

Table 1

The geochemical parameters for analyzed samples"

井号岩性TOC/%S1/(mg/g)S2/(mg/g)Tmax/℃IH/(mg/g)IT/(mg/g)VRo%有机相
Q21黑色泥岩3.560.5221.78430612150.58C
W32黑色泥岩1.580.235.37430340150.57D/E
S1碳质泥岩8.561.0810.75426126130.65F

Fig. 7

The relationship of cumulative yield characteristics of gas hydrocarbon (C1-C5) and liquid hydrocarbon (C6+) and temperature"

Table 2

Kinetic parameters for oil generation from the three kerogen organofacies in the Jizhong Depression"

井号有机相IH/(mg/g)A/s-1E均值 /(kJ/mol)σE/(kJ/mol)
Q21C相6202.44e14220.44.9
W32D/E相3504.97e14225.27.5
S1F相1451.23e17255.19.6

Table 3

Kinetic parameters for gas generation from the three kerogen organo facies in the Jizhong Depression"

井号有机相IH /(mg/g)A/s-1E均值 /(kJ/mol)σE/(kJ/mol)
Q21C相6202.29e16254.412.1
W32D/E相3501.96e16254.29.3
S1F相1451.93e16274.015.1

Fig.8

Calculated transformation ratios versus tempera-ture for three different organic-facies(the heating rate is 3 ℃/Ma)"

1 卢学军, 刘华, 王建瑞, 等. 渤海湾盆地霸县凹陷输导体系与新近系油气运聚特征[J]. 石油实验地质, 2010,32(3):258-261.
LU X J, LIU H, WANG J R, et al. Petroleum migration system and Neogene petroleum accumulation features in the Baxian Sag, Bohai Bay Basin [J]. Petroleum Geology & Experiment, 2010,32(3):258-261.
2 李欣, 郑署泓, 彭宁, 等. 冀中霸县凹陷古近系深层油气资源潜力研究[J]. 石油实验地质, 2008,30(6):600-605.
LI X, ZHENG S H, PENG N, et al. Analysis of deep-seated hydrocarbon resource potential of Palaeogene in the Baxian Sag, central Hebei Province [J]. Petroleum Geology & Experiment, 2008,30(6):600-605.
3 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术——以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011,16(4):1-10.
ZHAO X Z, JIN F M, WANG Q, et al. A superdeep and superhigh temperature carbonate buried-hill reservoir in eastern China: Discovery and the key exploration technology of Nudong-1 buried-hill oil and gas reservoir in Jizhong Depression, Bohaiwan Basin[J]. Marine Origin Petroleum Geology, 2011,16(4):1-10.
4 赵贤正, 金凤鸣, 王权, 等. 渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J]. 石油学报, 2011,32(6):915-927.
ZHAO X Z, JIN F M, WANG Q, et al. Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin: Discovery and significance[J]. Acta Petrolei Sinica, 2011,32(6):915-927.
5 JIN Q, ZHAO X Z, JIN F M, et al. Generation and accumulation of hydrocarbons in a deep "buried hill" structure in the Baxian Depression, Bohai Bay Basin, eastern China[J]. Journal of Petroleum Geology, 2014,37(4):391-404.
6 ZHAO X Z, LIU C J, JIN F M, et al. Petroleum genetic types and oil–gas sources of deep reservoirs in Baxian Depression, Northeast China[J]. Journal of Petroleum Science and Engineering, 2015,134:105-113.
7 ZHAO X Z, ZHANG L, JIN F M, et al. Hydrocarbon charging and accumulation history in the Niudong buried hill field in the Baxian Depression, eastern China[J]. Marine and Petroleum Geology, 2017,88:343-358.
8 王建, 王权, 师玉雷, 等. 冀中坳陷霸县凹陷古近系超深层油气成因分析[J]. 天然气地球科学, 2015,26(1):21-27.
WANG J, WANG Q, SHI Y L, et al. The cause of ultra deep-seated oil and gas of Paleogene in Baxian Sag[J].Natural Gas Geoscience,2015,26(1):21-27
9 王权, 王道军, 邹华耀, 等. 霸县凹陷古近系烃源岩生物标志化合物特征及对油气成藏的贡献[J]. 油气地质与采收率, 2017,26(6):1-8.
WANG Q, WANG D J, ZOU H Y, et al. Development characteristics of biomarkers in Paleogene source rocks and its significance to petroleum accumulation in the Baxian Sag[J]. Petroleum Geology and Recovery Efficiency, 2017,26(6):1-8.
10 CHEN X, HAO F, GUO L, et al. Characteristic of source rocks and origin of crude oils in the Raoyang Sag and Baxian Sag, Bohai Bay Basin, China: Insights from geochemical and geological analyses[J]. Marine and Petroleum Geology, 2018,97:407-421.
11 王浩, 王飞宇, 周仁志, 等. 渤海湾盆地饶阳凹陷沙三段烃源灶精细评价[J]. 新疆石油地质, 2015,36(4):423-429.
WANG H, WANG F Y, ZHOU R Z, et al. Fine evaluation of Es3 source kitchen in Raoyang Sag, Bohai Bay Basin[J]. Xinjiang Petroleum Geology, 2015,36(4):423-429.
12 HUC A Y, IRWIN H I, SCHOELL M. Organic matter quality changes in an Upper Jurassic shale sequence from the Viking Graben[M]// THOMAS B M. Petroleum Geochemistry in Exploration of the Norwegian Shelf. London: Graham & Trotman, 1985:179-184.
13 BURWOOD R, CORNET P J, JACOBS L, et al. Organofacies variation control on hydrocarbon generation: A Lower Congo Coastal Basin (Angola) case history[J]. Organic Geochemistry, 1990,16(1/3):325-338.
14 JONES R W. Organic Facies[M]//BROOKS J, WELTE D. Advances in Petroleum Geochemistry.London:Academic Press, 1987:1-90.
15 郝芳, 陈建渝, 孙永传,等. 有机相研究及其在盆地分析中的应用[J]. 沉积学报, 1994,12(4):77-86.
HAO F, CHEN J Y, SUN Y C,et al. Organic facies studies and their use in sedimentary basin analysis[J]. Acta Sedimentological Sinica, 1994,12(4):77-86.
16 彭立才, 杨慧珠, 刘兰桂, 等. 柴达木盆地北缘侏罗系烃源岩沉积有机相划分及评价[J]. 石油与天然气地质, 2001,22(2):178-181.
PENG L C, YANG H Z, LIU L G, et al. Classification and estimation of organic facies in Jurassic source rocks from north margin,Chaidamu Basin[J].Oil & Gas Geology,2001, 22(2):178-181.
17 姚素平, 张科, 胡文瑄, 等. 鄂尔多斯盆地三叠系延长组沉积有机相[J]. 石油与天然气地质, 2009,30(1):74-84.
YAO S P, ZHANG K, HU W X, et al. Sedimentary organic facies of the Triassic Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2009, 30(1):74-84.
18 HORSFIELD B. Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography[J]. Geochemica et Cosmochimica Acta, 1989,53:891-901.
19 PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995,12(3):291-319.
20 王飞宇, 冯伟平, 关晶, 等. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报:地球科学版, 2016,46 (2):388-397.
WANG F Y, FENG W P, GUAN J, et al. Geochemical assessment of lacustrine tight oil and application[J]. Journal of Jilin University :Earth Science Edition,2016,46(2):388-397.
21 WANG F Y, HE Z Y, LI J K, et al. Geological Calibration of Kinetic Model for Petroleum Generation of Lacustrine Source Rocks[C]// AAPG International Conference and Exhibition. Milan, Italy:2011.
22 BAUR F. Predicting petroleum gravity with basin modeling: New kinetic models[J]. AAPG Bulletin, 2019,103(8):1811-1837.
23 靳军, 王飞宇, 任江玲, 等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质, 2019,40(2):145-151.
JIN J, WANG F Y, REN J L, et al. Genesis of high yield oil and gas in Well Gaotan1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019,40(2):145-151.
24 程志强, 王飞宇, 江涛, 等. 二连盆地东北部下白垩统烃源岩有机相与生烃特征[J]. 新疆石油地质, 2018,39(4):384-392.
CHENG Z Q, WANG F Y, JIANG T, et al. Organic facies and hydrocarbon generation characteristics of Lower Cretaceous source rocks in northeastern Erlian Basin[J]. Xinjiang Petroleum Geology, 2018,39(4):384-392.
25 程志强, 王飞宇, 师玉雷, 等. 二连盆地乌里雅斯太凹陷南洼烃源岩有机相与生烃特征[J]. 天然气地球科学, 2018,29(5):696-707.
CHENG Z Q, WANG F Y, SHI Y L, et al. Organic facies and hydrocarbon characteristics of source rock in south trough of Wuliyasitai Sag,Erlian Basin[J]. Natural Gas Geoscience,2018,29(5):696-707.
26 赵志刚, 王飞宇, 王洪波, 等. 二连盆地赛汉塔拉凹陷烃源岩有机相与烃源灶[J]. 岩性油气藏, 2017,29(2):28-35.
ZHAO Z G, WANG F Y, WANG H B, et al. Source kitchen and organic facies of source rocks in Sahantala Sag, Erlian Basin[J]. Lithologic Reservoirs, 2017, 29(2):28-35.
27 张文朝, 杨德相, 陈彦均, 等. 冀中坳陷古近系沉积构造特征与油气分布规律[J]. 地质学报, 2008,82(8):1103-1112.
ZHANG W C, YANG D X, CHEN Y J, et al.Sedimentary structural characteristics and hydrocarbon distributed rules of Jizhong Depression[J]. Acta Geologica Sinica, 2008, 82(8):1103-1112.
28 谢晓军, 邓宏文. 霸县凹陷古近系层序地层构型[J]. 岩性油气藏, 2008,20(2):74-77.
XIE X J, DENG H W. Paleogene sequence configuration in Baxian Sag[J]. Lithologic Reservoirs, 2008,20(2):74-77.
29 张自力, 朱筱敏, 李琦, 等. 霸县凹陷古近系层序格架下沉积充填响应过程分析[J]. 中国矿业大学学报, 2019,48(1):124-141.
ZHANG Z L, ZHU X M, LI Q, et al. Response process of sedimentary filling under sequence framework of Paleogene in Baxian sag[J]. Journal of China University of Mining & Technology, 2019,48(1):124-141
30 FENG W P, WANG F Y, JIANG T, et al. Origin and accumulation of petroleum in deep precambrian reservoir in Baxian Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2020, 120: 104541.
31 PASSEY Q R, CREANEY S, KULLA J B, et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1999,74(12): 1777-1794.
32 PHILIPPI G T. On the depth, time and mechanism of petroleum generation[J]. Geochimica et Cosmochimica Acta, 1965,29(9):1021-1049.
[1] Jianying GUO, Xuening QI, Lianhua HOU, Aisheng HAO, Xu ZENG, Shiguo LIN, Xiugang PU, Zengye XIE, Yifeng WANG, Xiaobo WANG, Dawei CHEN. Origin and accumulation model of ultra-low permeability-tight sandstone (gravel) gas in Bohai Bay Basin [J]. Natural Gas Geoscience, 2022, 33(2): 181-194.
[2] Wenlong DANG, Gang GAO, Jianping LIU, Jingli YAO, Wenzhe GANG, Shangru YANG, Yanjuan DUAN, Lili ZHANG. Genetic types and sources of the subsalt natural gas in the Ordovician Majiagou Formation, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(2): 207-217.
[3] Shuangbiao HAN, Zhiyuan TANG, Chunlong YANG, Linfeng XIE, Chaohan XIANG, Brian HORSFIELD, Chengshan WANG. Genesis and energy significance of hydrogen in natural gas [J]. Natural Gas Geoscience, 2021, 32(9): 1270-1284.
[4] Zhiyong KANG, Xingwen ZHANG, Xiangguang HUANG, Yan HUI, Long LI. Derivation and application of the new theory equation of condensate gas volume coefficient [J]. Natural Gas Geoscience, 2021, 32(9): 1403-1409.
[5] Chunlong YANG, Zengye XIE, Jian LI, Jianying GUO, Lu ZHANG, Hui JIN, Cuiguo HAO, Xiaobo WANG, Zhisheng LI, Jin LI, Xuening QI. Geochemical characteristics and genesis of natural gas in Shaximiao Formation of Middle Jurassic in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1117-1126.
[6] Hailiang LIU, Sibing LIU, Dong ZHOU, Wen LIU, Siding JIN. Geochemical indicators for tracing the source and migration of the tight sandstone gas in western Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1127-1141.
[7] Zengye XIE, Chunlong YANG, Jian LI, Lu ZHANG, Jianying GUO, Hui JIN, Cuiguo HAO. Accumulation characteristics and large-medium gas reservoir-forming mechanism of tight sandstone gas reservoir in Sichuan Basin: Case study on the Upper Triassic Xujiahe Formation gas reservoir in central Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1201-1211.
[8] An-lai MA, Zhi-liang HE, Lu YUN, Xian WU, Hui-li LI, Nan-sheng QIU, Jian CHANG, Hui-xi LIN, Zi-cheng CAO, Xiu-xiang ZHU, Dong-hua YOU. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060.
[9] Yu-xiang DING, Guang-you ZHU, Huai-shun ZHANG, Yu-ping ZHOU, Xiao-jie YAO, Gao-en WU, Shun-lin TANG. Source, migration and detection of radon in natural gas [J]. Natural Gas Geoscience, 2021, 32(5): 754-763.
[10] Zhong-xi HAN, Yan-xia GOU, Jin LI, Shou-guo GE, Wen-nian TIAN, Heng HUANG. Content distribution characteristics and genetic analysis of mercury in the natural gas from Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 356-362.
[11] Huai-shun ZHANG, Guang-you ZHU, Yu-xiang DING, Yu-ping ZHOU, Xiao-jie YAO, Gao-en WU, Shun-lin TANG. Sources of mercury in natural gas and mercury removal technology [J]. Natural Gas Geoscience, 2021, 32(3): 363-371.
[12] Guo-jian WANG, Yu-song YUAN, Wu LI, Chuan-zhi WU, Yu ZOU, Li LU, Feng-Li LI. Current situation and existing problems in research of natural gas diffusion coefficient [J]. Natural Gas Geoscience, 2021, 32(3): 372-381.
[13] Zhi-gang WEN, Li-rong DOU, Ding-sheng CHENG, Wei LI. Hydrocarbon characteristics and genesis in the southern depression of Bongor Basin, Chad [J]. Natural Gas Geoscience, 2021, 32(2): 205-214.
[14] Wei TIAN. Physical simulation of EOR mechanism by CO2 injection for condensate gas reservoir [J]. Natural Gas Geoscience, 2021, 32(10): 1592-1600.
[15] Jin-xing DAI,Yun-yan NI,Da-zhong DONG,Sheng-fei QIN,Guang-you ZHU,Shi-peng HUANG,Cong YU,De-yu GONG,Feng HONG,Yan-ling ZHANG,Zeng-min YAN,Quan-you LIU,Xiao-qi WU,Zi-qi FENG. 2021-2025 is a period of great development of China's natural gas industry: Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China [J]. Natural Gas Geoscience, 2021, 32(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] . [J]. Natural Gas Geoscience, 0, (): 6 .
[8] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[9] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[10] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .