Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (12): 1733-1748.doi: 10.11764/j.issn.1672-1926.2020.07.004

Previous Articles     Next Articles

Advances in geochronology of hydrocarbon accumulation

Nan XUE1,2(),Guang-you ZHU2(),Xiu-xiang LÜ1,Tao HE1,2,Zheng-hui WU1,2   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Beijing),Beijing 102249,China
    2.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
  • Received:2020-04-10 Revised:2020-07-13 Online:2020-12-10 Published:2020-12-11
  • Contact: Guang-you ZHU E-mail:18409185904@163.com;zhuguangyou@petrochina.com.cn
  • Supported by:
    The Scientific Research and Technology Development Project of PetroChina(2019B-04);The China National Science and Technology Major Project(2017 ZX05005002-005)

Abstract:

Timing technology for oil and gas transportation and accumulation (dating or determining the hydrocarbon accumulation period) is a very critical technology in the study of oil and gas from a series of processes such as hydrocarbon generation, migration, accumulation, and preservation. Whether it is for optimizing exploration targets, reconstructing the formation and evolution process of oil and gas reservoirs, or for enriching and deepening the theory of oil and gas accumulation, it has very important practical and theoretical significance. In the past few decades, scholars at home and abroad have conducted a large number of exploratory studies on the dating of hydrocarbon accumulation, and gradually formed the petroleum accumulation geochronology. As a branch of petroleum geology, based on systematic investigations, the author believes that the formation and development of petroleum accumulation geochronology has gone through three main stages: qualitative description stage, semi-quantitative description stage, quantitative characterization stage. By summarizing and categorizing, it is mainly divided into traditional geological analysis method, fluid inclusion dating method and isotope dating method, and the application principle, scope of application, advantages and disadvantages of various dating methods are briefly introduced.

Key words: Hydrocarbon accumulation dating, Quantitative description, Fluid inclusion dating, Isotopic dating

CLC Number: 

  • TE121

Table 1

Development stage of hydrocarbon accumulation geochronology"

时间段主要测年手段适用范围/局限性意义
20世纪80—90年代(定性描述阶段)结合盆地构造演化史与古地温史,以含油气系统中各项参数的有效耦合为基础,形成了一系列传统地质分析方法,主要有:圈闭形成时间法、烃源岩生排烃期法、油藏饱和压力法、油水界面追溯法等间接的、定性的研究方法。是根据盆地构造演化过程中的其他参数间接地限制油气的成藏时期,仅提供大致或最早成藏时间,必然会存在诸多不确定性和误差,无法适用于复杂叠合盆地对油气成藏期进行了定性判断,油气成藏年代学正式进入石油地质学界
20世纪90年代—21世纪初期(半定量描述阶段)随着地球化学分析手段的深入,流体包裹体均一温度法得到大力发展,同位素测年也探索性地被应用(1)流体包裹体均一温度测年对恢复盆地/油气田的埋藏史与热史有较高的要求。(2)储层中自生黏土矿物测年,伊利石停止生长(有人[5]质疑),所测年龄偏大,由于样品的分离、富集相对困难,不适合多期成藏,尤其是晚期成藏由传统的定性研究转变位定量或半定量研究,为成藏年代学的建立奠定了重要基础
21世纪初期至今(定量描述阶段)同位素技术的发展与成熟,稀有气体同位素测年和放射性同位素测年得到广泛应用,稀有气体同位素测年有流体包裹体40Ar—39Ar、表生含钾矿物的K—Ar、40Ar—39Ar定年和(U—Th)/He热年代学;放射性同位素测年包括锆石的U—Pb、(U—Th)/He定年、磷灰石裂变径迹定年、沥青和原油中的U—Pb、Rb—Sr、Sm—Nd、Re—Os等放射性同位素定年,Re—Os同位素测年应用最多(1)自生伊利石K—Ar、Ar—Ar法,对于存在多油源以及多期油气充注的沉积盆地,所得数据具有多解性。(2)捕获油包裹体的自生钾长石Ar—Ar法,可以区分油气充注的期次,对于存在多油源以及多期油气充注的沉积盆地可以限定油气成藏的时代。(3)Pb—Pb法、Sr—Nd法,由于沥青中Pb、Sr、Nd同位素的赋存形式与油气成藏的关系不确定,导致数据的可靠性存在疑问。(4)Re—Os法,Re、Os元素主要是和原油、沥青以及干酪根的有机质络合在一起的,理论基础可靠。同时(187Os/188Os)i可以指示油源实现了从半定量向定量的转变,进一步完善了成藏年代学

Table 2

Classification table for qualitative judgment of hydrocarbon accumulation dating"

定年方法定年意义相同点特点实例
传统地质方法圈闭形成时间法油气藏形成的最早时间(1)简单易行,对其他定年方法确定的成藏年代给予限制。(2)均属于间接的测年方法。(3)适用于构造相对稳定、充注期次单一的盆地大致给出油气成藏范围,研究对象不是油气藏本身,而是对成藏时间的外推PERVUKHINA等[18]根据数据显示,西西伯利亚盆地北部的Bovanenkovo、Gubkin、Taz、Novyi Port、Urengoi、Kharampur和 Medvezh’e隆起大多起源于早中侏罗世,定型于早白垩世,大多数模型预测出该区油气藏主要形成于晚白垩世至今,主要集中在新近纪,含油气的古构造结果表明,所讨论的J带和J2带背斜圈闭的产油条件最有利的时期为中、晚白垩世至始新世(含始新世)
生排烃时间法与圈闭法相比,生排烃史确定的成藏期更接近油气藏的形成时间JIANG等[19]采用盆地模拟方法,对东濮凹陷烃源岩的生排烃史进行了模拟,结果表明,东濮凹陷烃源岩主要有2个生排烃期,第一期是东营中后期(约31~27 Ma),烃源岩大部分处于成熟至高度成熟阶段,处于生烃和排烃的高峰期,炭质沥青、沥青质沥青和胶态沥青反映了早期的油气充注阶段;第二期是从明华镇晚期到现在(5~0 Ma),烃源岩的埋藏深度和成熟度达到并超过之前的隆起,烃源岩的演化继续进行,油质沥青则反映了这期油气充注阶段
油藏饱和压力法油气藏形成的时间仅适用于成藏后无压力变化的简单盆地(1)BLIZNICHENKO[20]应用油藏饱和压力法对Ust’-Balyk油田B10区块的Neocomian统和上侏罗统的油气藏进行了定时,其油气形成于Aptian阶(早白垩世晚期,在向东更远的Surgut隆起区)。(2)包书友等[21]分析了东营凹陷和惠民凹陷油层的饱和压力,认为油气主要在古近系东营组沉积末期或新近系明化镇组沉积末期发生成藏
油水界面追溯法此法不仅可以确定出油气运聚成藏的时间,而且还可以动态地分析油气成藏后的调整过程,分析成本低、简便直观对塔中4号、6号、16号构造等油气藏的油气水界面演化史分析,发现塔中地区石炭系油藏普遍形成于晚海西期[22]

Table 3

Semi-quantitative judgment of uniform temperature dating of fluid inclusions"

定年方法定年意义特点实例数据来源
流体包裹体均一温度油气充注成藏的最早时间间接的、微观的、半定量研究方法,应用广泛,效果较好通过对包裹体类型、成岩矿物期次、烃类包裹体成分以及均一温度等分析, 表明南八仙油田古近系的油气藏发生2期充注,分别形成于渐新世和上新世,而新近系油气藏则主要发生一期油气充注,形成于上新世[65]
将流体包裹体荧光分析和均一温度与当地的地热历史相结合,确定了鄂尔多斯盆地榆林气田气体的充注历史。早期充烃的均一温度为70~120℃,推测形成时间为220~190 Ma,对应于晚三叠世—早侏罗纪;晚期充烃的均一温度为120~190℃,推测形成时间为190~72 Ma,对应于中侏罗世—早白垩世[66]
采用岩石学、荧光光谱和显微测温等综合流体包裹体测试分析,对东营凹陷北部沙3段、沙4段的储层样品进行研究,结果表明存在2期油充注,时间分别为24~20 Ma,4~3 Ma,且第二次充油期是东营凹陷北部成藏的主导期[67]
对塔里木盆地北部地区奥陶系碳酸盐岩油藏流体包裹体与埋藏史分析表明,油气充注的时间在晚海西期(P),大约为290~250 Ma[68]
根据塔里木盆地北部哈拉哈塘地区RP3井的包裹体数据,对圈闭中流体的温压进行测试分析,结合埋藏史图,得出主要有2期油气充注,早期充注发生在422~412 Ma,晚期充注发生在20~6 Ma[69]
根据储层流体包裹体资料以及荧光显微特征,结合生排烃史,东濮凹陷北部主要经历了2个成藏期。第一期从晚东营沉积期至晚渐新世早隆起期,第二期从上新世晚明华镇期至第四纪,且第一阶段为主要成藏期[19]
根据流体包裹体资料分析结果,表明哈拉哈塘地区南部奥陶系超深层油气藏主要发育单期油气包裹体,均一温度分布在94 ℃和119 ℃,结合埋藏史和热史,认为哈拉哈塘油田在晚海西期发生油气充注,是主要的生排烃期[12]
使用流体包裹体数据对中国米仓山构造带新元古代至下寒武统油气藏进行了研究,结合储层热史,在米仓山构造带的油气系统中,确定了3个清晰的油气充注阶段:充油阶段,在二叠纪早期(~277 Ma); 裂解气充注阶段,发生在晚三叠世至早侏罗世(212~198 Ma);干气充注阶段,发生在中侏罗世(173~166 Ma)[70]

Fig.1

Illite 40Ar/39Ar step heating chart(modified by Ref.[72])"

Table 4

A classification table for isotopic dating"

定年方法定年意义相同点实例
稀有气体 同位素

40K—40Ar

定年

油气充注且代表圈闭形成的最大年龄都属于直接的、定量的研究方法,测定的为绝对年龄(1)ZHANG等[74]对塔中志留系沥青砂岩储层的9个样品进行K—Ar测年,认为主要发生2期充注,位于盆地边缘的发生早期充注,大概为383~271 Ma,对应晚加里东—早海西期;位于盆地中央的充注较晚,大概在235~203 Ma之间,对应晚海西期。这些自生伊利石定年结果不仅与常规成藏期分析技术的结果一致,而且突出了不同油藏成藏的时序差异。(2)ZHU等[68]对塔里木盆地北部地区奥陶系碳酸盐岩油藏进行K—Ar测试分析,表明油气充注的时间在晚海西期(P),大约在290~250 Ma之间。(3)WANG等[75]分别对长6、长8、长9等3个油藏储层中的流体包裹体和自生伊利石进行分析,通过包裹体测温和K—Ar测年,表明长6、长8、长9烃类充注时间均可分为2个阶段:135~125 Ma和95~85 Ma, 135~125 Ma和95~82 Ma, 130~122 Ma和92~80 Ma,分别对应于早白垩世和晚白垩世
40Ar—39Ar油气成藏时间

(1)QIU等[76]对庆深气田的3个石英样品进行测试分析,都得到了定义良好的等时线,而且年龄吻合得很好,平均年龄为42.4±0.5 Ma,被解释为气侵的时间

(2)张有瑜等[77]根据鄂尔多斯盆地苏里格气田盒8段砂岩储层中自生伊利石的Ar—Ar测年分析数据,气体年龄在152~130 Ma,代表了自生伊利石的年龄并反映了成藏年代

沥青、原油放射性同位素Re—Os同位素 定年原油的形成时间

(1)SELBY等[78]应用Re—Os同位素法首次对加拿大阿尔伯塔省巨型油砂沉积中的油砂和重油样品进行了定年,获得Re—Os同位素等时线年龄为112±5.3 Ma,初始187Os/188Os值为1.4,表明在112±5.3 Ma之前发生油气侵位,确定了白垩系的黑色页岩不是主要的烃源岩,而是来自更古老的太古宙烃源岩

(2)FINLAY等[79]对英国大西洋边缘18个油样品进行分析,获得Re—Os同位素等时线年龄为68 Ma,与盆地模拟和Ar—Ar确定的年龄一致

(3)LILLIS等[80]对美国怀俄明州和蒙大拿州Bighorn盆地Phosphoria油气系统中的Re—Os地质计时器进行了评价,经过修正排除TSR作用后,Phosphoria油气系统中的Re—Os等时线年龄为211±21 Ma,与沥青和石油生成的开始时间一致

(4)GE等[81]测得四川盆地北缘米仓山地区焦沥青的Re—Os等时线年龄为184 Ma,与盆地模拟指示的烃源岩于晚三叠世—侏罗纪进入最大埋藏期(流体包裹体温度为160 ℃)具有出良好的吻合性,共同指示早侏罗世期间可能是原油高温裂解作用、天然气生成的主要阶段

(5)GE等[82]对四川盆地龙门山冲断带除GY-1和HSCD-1样品以外的所有一号和三号沥青脉体中样品的Re—Os同位素数据进行综合分析, 获得一组等时线年龄为486±15 Ma,与前人根据埋藏史、成熟度演化史分析得到的生烃作用时间一致,解释了原油生成的时间。基于二号沥青脉体中的样品以及裂缝沥青样品的Re—Os分析,结果显示二者都得到中侏罗世的等时线年龄(162~172 Ma),与龙门山造山带侏罗纪构造活动及同期的油气生成作用吻合

(6)沈传波等[83]根据Re—Os同位素年代学结果定量揭示了四川盆地震旦系—寒武系存在奥陶纪—志留纪期间(~450 Ma)和晚三叠世—侏罗纪期间(205~162 Ma)的2次油气成藏作用

Fig.2

Relationship of Re and Os contents between whole rock and organic matter in black shale(modified by Ref.[100])"

Fig.3

Re-Os dating principle and its isochronous age acquisition diagram (modified by Ref.[101])"

Table 5

Isotopic diluted carbonate dating and laser in-situ carbonate dating"

U—Pb测年原理主要特点案例
同位素稀释碳酸盐U—Pb测年法样品中的238U和235U经放射性衰变分别形成稳定同位素206Pb和207Pb,据此可以测定放射性成因的子体同位素含量进而确定其形成年龄应用较为广泛,但测试周期长、成功率低。(1)LI等[109]使用同位素稀释法碳酸盐U—Pb定年法,对成岩阶段形成的方解石脉进行测试,结果显示方解石胶结物IS1的年龄为171±16 Ma(MSWD=0.51)。(2)ROBERTS等[110]使用方解石同位素稀释法,对WC-1开展了年代学分析,年龄为254.4±1.6 Ma
方解石激光原位ICP—MSU—Pb定年法发展迅速,测试精度高,具有高空间分辨率、高测试效率。(1)LI等[109]激光原位碳酸盐岩U-Pb定年法,对成岩阶段形成的方解石脉进行测试,结果显示方解石胶结物IS1的年龄为165.5±3.3 Ma(MSWD=1.6)。(2)COOGAN等[111]使用原位U—Pb激光烧蚀—电感耦合等离子体质谱法测定全球8个地区上地壳方解石的首次放射性年龄,证明了晚中生代和晚新生代大洋地壳热液碳酸盐含量之间的巨大差异记录了全球环境条件的变化。(3)ROBERTS等[110]使用激光原位定年技术,对WC-1开展了年代学分析,年龄为254.4±1.6 Ma,其精度相比稀释法更高。(4)GODEAU等[112]对法国东南部阿尔贡微孔灰岩(特提斯北缘)中的方解石胶结物进行了绝对U—Pb定年,获得了96.7±4.9 Ma至90.5±1.6 Ma的U—Pb年龄。以上观测结果强调了长暴露期和相关大气侵入的重要性有利于形成和保存良好的微孔储层
1 王飞宇, 金之钧, 吕修祥, 等. 含油气盆地成藏期分析理论和新方法[J]. 地球科学进展, 2002, 17(5): 754-762.
WANG F Y, JIN Z J, LV X X, et al. Analyzing theory and new method for the accumulation period of petroliferous basins[J]. Advances in Earth Science, 2002, 17(5): 754-762.
2 赵靖舟, 李秀荣. 成藏年代学研究现状[J]. 新疆石油地质, 2002, 23(3): 257-261.
ZHAO J Z, LI X R. Research status of hydrocarbon accumulation chronology[J]. Xinjiang Petroleum Geology, 2002, 23(3): 257-261.
3 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-382.
ZHAO J Z. Research progress and development trend of hydrocarbon accumulation chronology[J].Advances in Earth Science, 2002, 17(3): 378-382.
4 张义杰, 曹剑, 胡文瑄. 准噶尔盆地油气成藏期次确定与成藏组合划分[J]. 石油勘探与开发, 2010, 37(3): 257-262.
ZHANG Y J, CAO J, HU W X. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2010, 37(3): 257-262.
5 刘文汇, 王杰, 陶成, 等. 中国海相层系油气成藏年代学[J]. 天然气地球科学, 2013, 24(2): 199-209.
LIU W H, WANG J, TAO C, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geoscience, 2013, 24(2): 199-209.
6 LEVORSEN A I. Geology of Petroleum: BookⅡ[M]. Beijing: Geological Publishing House, 1975: 194-197.
7 马安来, 张水昌, 张大江, 等. 油气成藏期研究新进展[J]. 石油与天然气地质, 2005, 26(3): 271-276.
MA A L, ZHANG S C, ZHANG D J, et al. New advancement in study of reservoiring period[J]. Oil & Gas Geology, 2005, 26(3): 271-276.
8 魏冬, 王宏语. 油气成藏年代学研究方法进展[J]. 油气地质与采收率, 2011, 18(5):18-22.
WEI D, WANG H Y. Advances in research methods of hydrocarbon accumulation chronology[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(5):18-22.
9 LEVORSEN A I. Petroleum Geology[M]. Gostoptekhizdat, Moscow, 1958. (in Russian)
10 庞雄奇, 罗晓容, 姜振学, 等. 中国西部复杂叠合盆地油气成藏研究进展与问题[J]. 地球科学进展, 2007, 22(9): 879-887.
PANG X Q, LUO X R, JIANG Z X, et al. Research progress and problems of hydrocarbon accumulation in complex superposed basins in western China[J]. Advances in Earth Science, 2007, 22(9): 879-887.
11 李建华, 范柏江, 耿辉. 油气成藏期研究方法和进展[J]. 科技导报, 2010, 28(22): 106-111.
LI J H, FAN B J, GENG H. Analysis methods and progresses of dating of hydrocarbon accumulation[J]. Science & Technology Review, 2010, 28(22): 106-111.
12 ZHU G Y, ALEXEI V M, ZHANG Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin,China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743.
13 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198:1-28.
14 KONTOROVICH A E, NESTEROV I I, SALMANOV F K, et al. Petroleum geology of West Siberia[J]. Nauka, Moscow, 1975.( in Russian)
15 刘文汇, 王杰, 腾格尔, 等. 中国海相层系多元生烃及其示踪技术[J]. 石油学报, 2012, 33(s1): 115-125.
LIU W H, WANG J, TENG G E, et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, 33(s1): 115-125.
16 肖娟娟, 季汉成, 贾海波, 等. 油气成藏时间研究方法综述[J]. 内蒙古石油化工, 2016 (6): 134-139.
XIAO J J, JI H C, JIA H B, et al. A review of research methods for hydrocarbon accumulation time[J]. Inner Mongolia Petrochemical Industry, 2016 (6): 134-139.
17 LERCHE I, YARZAB R F. Determination of paleoheat flux from vitrinite reflectance data[J]. AAPG Bulletin, 1984, 68: 1704-1717.
18 PERVUKHINA N V, SHEMIN G G, MOSKVIN V I. History of anticlinal traps and oil and gas fields in Jurassic reservoirs in the northern West Siberian Basin[J]. Russian Geology and Geophysics, 2017, 58(3-4):384-392.
19 JIANG Y L, FANG L, LIU J D, et al. Hydrocarbon charge history of the Paleogene reservoir in the northern Dongpu Depression, Bohai Bay Basin,China[J].Petroleum Science, 2016(4): 3-19.
20 BLIZNICHENKO S I. Timing the formation of Neocomian oil reservoirs of the West Siberian Basin (case study of fields in the Middle Ob areas), in: Geological Studies for Petroleum Exploration[J].Vniioeng,Moscow,1967:18-23.(in Russian)
21 包友书, 蒋有录, 张林晔, 等. 饱和压力法确定成藏期问题探讨[J]. 石油勘探与开发, 2011, 38(3): 379-384.
BAO S Y, JIANG Y L, ZHANG L Y, et al. Conditions for the saturation pressure method in identifying oil accumulation periods[J].Petroleum Exploration and Development, 2011, 38(3): 379-384.
22 赵靖舟. 油气水界面追溯法与塔里木盆地海相油气成藏期分析[J]. 石油勘探与开发, 2001, 28(4): 55-58.
ZHAO J Z. Oil-gas-water interface tracing method and analysis of marine hydrocarbon accumulation period in Tarim Basin[J]. Petroleum Exploration and Development,2001,28(4):55-58.
23 HOSHKIW M E. Reliability of saturation-pressure method for dating time of oil accumulation[J].AAPG Bulletin,1970,54(5):699-708.
24 邓良全, 刘胜, 杨海军. 塔中隆起石炭系油气成藏期研究[J]. 新疆石油地质, 2000, 21(1): 23-26.
DENG L Q, LIU S, YANG H J. Study on hydrocarbon accumulation period of Carboniferous system in Tazhong Uplift[J]. Xinjiang Petroleum Geology, 2000, 21(1): 23-26.
25 赵靖舟. 油气水界面追溯法—研究烃类流体运聚成藏史的一种重要方法[J]. 地学前缘, 2001, 8(4): 373-378.
ZHAO J Z. Oil-gas-water interface tracing method - an important method to study the hydrocarbon fluid migration and accumulation history[J]. Earth Science Frontiers: China University of Geosciences, Beijing, 2001, 8(4): 373-378.
26 刘文超, 叶加仁, 郭飞飞. 油气成藏期研究方法[J]. 海洋地质前沿, 2011, 27(8): 63-69.
LIU W C, YE J R, GUO F F. Research method of hydrocarbon accumulation period[J]. Marine Geology Frontiers, 2011, 27(8): 63-69.
27 米敬奎, 戴金星, 张水昌. 含油气盆地包裹体研究中存在的问题[J]. 天然气地球科学, 2005, 16(5): 602-605.
MI J K, DAI J X, ZHANG S C. Problems in the study of inclusions in petroliferous basins[J]. Natural Gas Geoscience, 2005, 16(5): 602-605.
28 王鹏, 刘四兵, 沈忠民, 等. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50-59.
WANG P, LIU S B, SHEN Z M, et al. Hydrocarbon accumulation history and its difference of gas reservoirs in Upper Triassic Formation of Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(1): 50-59.
29 HASZELDINE R S, SAMSON I M, CORNFORT C. Dating diagenesis in a petroleum basin: A new fluid inclusion method[J]. Nature, 1984, 30(7): 354-357.
30 MCLIMANS R K. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs[J]. Applied Geochemistry, 1987(2): 585-603.
31 门相勇, 李耀华. 油气藏形成时期研究方法及其应用[J]. 天然气勘探与开发, 2000, 23(4): 10-17.
MEN X Y, LI Y H. Research methods and application of hydrocarbon accumulation period[J].Natural Gas Exploration and Development, 2000, 23(4): 10-17.
32 蒋有录, 查明. 石油天然气地质与勘探[M]. 北京: 石油工业出版社, 2007: 211-214.
JIANG Y L, CHA M. Petroleum and Natural Gas Geology and Exploration[M].Beijing:Petroleum Industry Press, 2007: 211-214.
33 景琛, 王兆兵, 张德龙. 利用流体包裹体确定成藏期研究进展[J]. 中外能源, 2018, 23(11): 48-54.
JING C, WANG Z B, ZHANG D L. The research progress of hydrocarbon accumulation period using fluid inclusions[J]. Sino-Global Energy, 2018, 23(11): 48-54.
34 BURRUSS R C, CERONE K R, HARRIS P M. Fluid inclusion petrography and tectonic-burial history of the Al Ali No.2 well: Evidence for the timing of diagenesis and oil migration,northern Oman Foredeep[J]. Geology, 1983, 11: 567-570.
35 WALDERHAUG O, FIELDSKAAR W. History of hydrocarbon emplace-ment in the Oseberg Field determined by fluid inclusion mi-crothermometry and temperature modelling[C]∥ DORE A G, et al eds. NPF Special Publication 3. Basin Modelling: Advances and Applications. Amsterdam: Elsevier,1993.
36 SHEPHERD T J, DARBYSHIRE D P F. Fluid inclusion Rb-Sr isochrons for dating mineral deposit[J]. Nature, 1981,290: 578-579.
37 邱华宁, 戴瞳谟. 40Ar/ 39Ar法测定矿物流体包裹体年龄[J]. 科学通报, 1989, 34(9): 687-689.
QIU H N, DAI T M. Determination of the age of mineral fluid inclusions by the 40Ar/ 39Ar method[J]. Chinese Science Bulletin, 1989, 34(9): 687-689.
38 邱华宁, 彭良. 40Ar/39Ar年代学与流体包裹体定年[M]. 合肥: 中国科学技术大学出版社, 1997.
QIU H N, PENG L. 40Ar/39Ar Chronology and Fluid Inclusion dating[M]. Hefei: University of Science and Technology of China Press, 1997.
39 李华芹, 刘家齐, 魏林. 热液矿床流体包裹体年代学研究及其地质应用[M]. 北京: 地质出版社, 1993.
LI H Q, LIU J Q, WEI L. Studies on the Chronology of Fluid Inclusions in Hydrothermal Deposits and Its Geological Applications[J]. Beijing: Geological Publishing Press, 1993.
40 WALDERHAUG O A. Fluid inclusion study of quartz-cemented sandstones from offshore mid-Norway-possible evidence for continued quartz cementation during oil emplacement[J]. Journal of Sedimentary Petrology, 1990, 60: 203-210.
41 SAIGAL G, BJORLYKKE K, LARTER S. The effects of oil emplacement on diagenetic process-Examples from the Fulmar reservoir sandstones, Central North Sea[J]. AAPG Bulletin, 1992, 76(7): 1024-1033.
42 肖贤明, 刘祖发, 刘德汉, 等. 应用储层流体包裹体信息研究天然气气藏的成藏时间[J]. 科学通报, 2002, 47(12): 957-960.
XIAO X M, LIU Z F, LIU D H, et al. The hydrocarbon accumulation time of natural gas reservoir is studied by using reservoir fluid inclusion information[J]. Chinese Science Bulletin, 2002, 47(12): 957-960.
43 陈红汉, 李纯泉, 张希明, 等. 运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J]. 地学前缘, 2003, 10(1): 190.
CHEN H H, LI C Q, ZHANG X M, et al. Fluid inclusion is used to determine the hydrocarbon accumulation period and the main accumulation period of Tahe Oilfield[J]. Earth Science Frontiers(China University of Geosciences, Beijing),2003, 10(1): 190.
44 欧光习, 李林强, 孙玉梅. 沉积盆地流体包裹体研究的理论与实践[J]. 矿物岩石地球化学通报, 2006, 25(1): 1-11.
OU G X, LI L Q, SUN Y M. Theory and application of the fluid inclusion research on the sedimentary basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1): 1-11.
45 CAO Q, LIU Y Q. Application of fluid inclusion to study of petroleum migration in Santanghu Basin, China[J]. Acta Petrologica Sinica, 2007, 23(9): 2309-2314.
46 SCHUBERT F, DIAMOND L W, TOTH T. Fluid inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary[J]. Chemical Geology, 2007, 244(3/4): 357-381.
47 CONLIFFE J, BLAMEY N F, FEELY M, et al. Hydrocarbon migration in the Porcupine Basin,offshore Ireland:Eviden-ce from fluid inclusion study[J].Petroleum Geoscience, 2010, 16(1):67-76.
48 武丽艳. 稀有气体同位素地球化学在矿床学研究中的应用进展[J]. 岩石学报, 2019, 35(1): 215-232.
WU L Y. Advances of noble gas isotope geochemistry application in the study of ore deposits[J]. Acta Petrologica Sinica,2019, 35(1): 215-232.
49 PARNELL J, SWAINBANK I. Pb-Pb dating of hydrocarbon migration into a bitumen-bering ore deposit, North Wales[J]. Geology, 1990, 18(10): 1028-1030.
50 ZHU B Q, ZHANG J L, TU X L, et al. Pb, Sr and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration[J]. Geochimica et Cosmochimica Acta, 2001, 65: 2555-2570.
51 HAMILTON P J, FALLICK A E, MACINTYPE R M. Isotopic tracing of the province and diagenesis of Lower Brent Group Sand, North Sea[C]∥ Brooks, Glennie K W. Petroleum Geology of Northwest Europe. Graham and Trotman, London, 1987: 939-949.
52 HAMILTON P J, KELLY S, FALLICK A E. K-Ar dating of illite in bydrocarbon reservoirs[J].Clay Minerals,1989,24(2):215-231.
53 彭杨伟, 高军平, 王翔. K—Ar测年的研究进展及其在地质中的应用探讨[J]. 甘肃科技, 2005, 21(2): 110-113.
PENG Y W, GAO J P, WANG X. Research progress of K-Ar dating and its application in geology[J]. Gansu Science and Technology, 2005, 21(2): 110-113.
54 李婧婧, 王毅, 李慧莉, 等. 同位素测年在油气成藏期研究中的应用[J]. 石油实验地质, 2012, 34(1): 88-92.
LI J J,WANG Y, LI H L, et al. Application of isotopic dating in geochronology of hydrocarbon migration and accumulation[J].Petroleum Geology & Experiment,2012,34(1):88-92.
55 LEE M, ARONSON J L, SAVIN S M. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherland[J]. AAPG Bulletin, 1985, 69(9): 1381-1385.
56 HAMILTON P J, GILES M R, AINSWORTH P. K-Ar dating of illites in Brent Group reservoirs: A regional perspective[C]// MORTON A C, HASZELDINE R S, GILES M R,et al. Geology of the Brent Group. London: Geological Society of London, 1992: 377-400.
57 EMERY D, ROBINSON A. Inorganic Geochemistry: Application to Petroleum Geology[M]. Oxford: Blackwell Scientific Publications, 1993: 101-119.
58 王飞宇, 何萍. 利用自生伊利石K—Ar定年分析烃类进入储集层的时间[J]. 地质论评, 1997, 43(5): 540-545.
WANG F Y, HE P. The entry time of hydrocarbon into the reservoir was analyzed by using authigenic illite K-Ar dating method[J]. Geological Review, 1997, 43(5): 540-545.
59 王飞宇, 郝石生, 雷加锦. 砂岩储层中自生伊利石定年分析油气藏形成期[J]. 石油学报, 1998, 19(2): 40-43.
WANG F Y, HAO S S, LEI J J. The hydrocarbon accumulation period in sandstone reservoir is analyzed by autogenic Illite dating[J]. Acta Petrolei Sinica, 1998, 19(2): 40-43.
60 张有瑜, 罗修泉, 宋健. 油气储层中自生伊利石K—Ar同位素年代学研究若干问题的初步探讨[J]. 现代地质, 2002, 16(4): 403-407.
ZHANG Y Y, LUO X Q, SONG J. A preliminary study on K-Ar isotope chronology of authigenic illite in oil and gas reservoirs[J]. Geoscience, 2002, 16(4): 403-407.
61 张有瑜, 罗修泉. 塔里木盆地哈6井石炭系—志留系砂岩自生伊利石K—Ar、Ar—Ar测年与成藏时代[J]. 石油学报, 2012, 33(5): 748-757.
ZHANG Y Y, LUO X Q. K-Ar and Ar-Ar dating of authigenic illite and hydrocarbon accumulation history of Carboniferous and Silurian sandstone reservoirs in Well Ha 6, Tarim Basin[J]. Acta Petrolei Sinica, 2012, 33(5): 748-757.
62 邱华宁, 吴河勇, 冯子辉, 等. 油气成藏40Ar—39Ar定年难题与可行性分析[J]. 地球化学, 2009, 38(4): 405-411.
QIU H N, WU H Y, FENG Z H, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4): 405-411.
63 黄道军, 刘新社, 张清, 等. 自生伊利石K—Ar测年技术在鄂尔多斯盆地油气成藏时期研究中的初步应用[J]. 低渗透油气田, 2004, 9(4): 37-39.
HUANG D J, LIU X S, ZHANG Q, et al. Primary application of autogenous illite K-Ar dating technology in the study of hydrocarbon accumulation period in Ordos Basin[J]. Low Permeability Oil & Gas Fields, 2004, 9(4): 37-39.
64 张忠民, 周瑾, 邬兴威. 东海盆地西湖凹陷中央背斜带油气运移期次及成藏[J]. 石油实验地质, 2006, 28(1): 30-33.
ZHANG Z M, ZHOU J, WU X W. Hydrocarbon migration stage and accumulation in central anticline of Xihu Sag in East China Sea Basin[J].Petroleum Geology & Experiment, 2006, 28(1): 30-33.
65 高先志, 陈发景. 研究油气成藏期次——以柴达木盆地南八仙油田第三系储层为例[J]. 地学前缘, 2000, 7(4): 548-554.
GAO X Z, CHEN F J. Study on hydrocarbon accumulation period: Taking tertiary reservoir of Nanbaxian Oilfield in Qaidam Basin as an example[J]. Earth Science Frontiers:China University of Geosciences, Beijing, 2000, 7(4): 548-554.
66 HU G Y, LI J, SHAN X Q, et al. The origin of natural gas and the hydrocarbon charging history of the Yulin Gas Field in the Ordos Basin, China[J]. International Journal of Coal Geology, 2010, 81: 381-391.
67 GUO X W, LIU K Y, HE S, et al. Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: Insight from integrated fluid inclusion analysis and basin modelling[J]. Marine and Petroleum Geology, 2012, 32: 21-35.
68 ZHU G Y, ZHANG S C, LIU K Y, et al. A well-preserved 250 million-year-old oil accumulation in the Tarim Basin, western China: Implications for hydrocarbon exploration in old and deep basins[J]. Marine and Petroleum Geology, 2013, 43: 478-488.
69 NI Z Y, WANG T G, LI M J, et al. An examination of the fluid inclusions of the well RP3-1 at the Halahatang Sag in Tarim Basin, northwest China: Implications for hydrocarbon charging time and fluid evolution[J]. Journal of Petroleum Science and Engineering, 2016, 146: 326-339.
70 TIAN T, YANG P, REN Z L, et al. Hydrocarbon migration and accumulation in the Lower Cambrian to Neoproterozoic reservoirs in the Micangshan tectonic zone, China: New evidence of fluid inclusions[J].Energy Reports,2020,6:721-733.
71 李志昌, 路远发, 黄圭成. 放射性同位素地质学方法与进展[M]. 武汉: 中国地质大学出版社, 2004: 208-244.
LI Z C, LU Y F, HUANG G C. Methods and Advances in Radioisotope Geology[M]. Wuhan: China University of Geosciences Press, 2004: 208-244.
72 KUNK M J, BRUSEWITZ A M. 39Ar recoil in an I/S clay from the Ordovician “'big bentonite bed”' at Kinnekulle, Sweden[J].Geological Society of America Bulletin,1987,19:230.
73 NORBERT C, HORST Z, NICOLE L, et al. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115: 76-96.
74 ZHANG Y Y, ZWINGMANN H, LIU K Y, et al. Hydrocarbon charge history of the Silurian bituminous sandstone reservoirs in the Tazhong Uplift, Tarim Basin, China[J]. AAPG Bulletin, 2011, 95(3): 395-412.
75 WANG Y, CHANG X C, SUN Y Z, et al. Investigation of fluid inclusion and oil geochemistry to delineate the charging history of Upper Triassic Chang 6, Chang 8, and Chang 9 tight oil reservoirs, Southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2020, 113, 104115.
76 QIU H N, WU H Y, YUN J B, et al. High-precision 40Ar/39Ar age of the gas emplacement into the Songliao Basin[J]. Geology, 2011, 39(5): 451-454.
77 张有瑜, HORST ZWINGMANN, 刘可禹, 等. 自生伊利石K-Ar、Ar-Ar测年技术对比与应用前景展望——以苏里格气田为例[J]. 石油学报, 2014, 35(3): 407-416.
ZHANG Y Y, HORST Z, LIU K Y, et al. Perspective on the K/Ar and Ar/Ar geochronology of authigenic illites: A case study from the Sulige Gas Field, Ordos Basin, China[J]. Acta Petrolei Sinica, 2014, 35(3): 407-416.
78 SELBY D, CREASER R A. Direct radiometric dating of the Devonian-mississippian time-scale boundary using the Re-Os black shale geochronometer[J].Geology,2005,33(7):545-548.
79 FINLAY A J, SELBY D, OSBORNE M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478.
80 LILLIS P G, SELBY D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana,USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330.
81 GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis[J].AAPG Bulletin, 2018, 102: 1429-1453.
82 GE X, SHEN C B, SELBY D, et al. Petroleum-generation timing and source in the northern Longmenshan thrust belt, Southwest China: Implications for multiple oil-generation episodes and sources[J].AAPG Bulletin,2018,102(5):913-938.
83 沈传波, 葛翔, 白秀娟. 四川盆地震旦系—寒武系油气成藏的Re—Os年代学约束[J]. 地球科学, 2019, 44(3): 713-726.
SHEN C B, GE X, BAI X J. Re-Os geochronology constraints on the Neoproterozoic-Cambrain hydrocarbon accumulation in the Sichuan Basin[J]. Earth Science, 2019, 44(3): 713-726.
84 SWANSON V E. Oil yield and uranium content of black shales[J]. US Geological Survey, 1960, 356-A: 1-43.
85 POPLAVKOVE M, IVANOVV V, LONGINOVAL G, et al. Behavior of rhenium and other metals in combustible central Asian shales[J]. Geokhimiya, 1977, 2: 273-283.
86 RAVIZZA G,TUREKAIN K K.Application of the 187Re-187Os system to black shale geochronometry [J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262.
87 COHEN A S, COE A L, BARTLETT JM, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 167(3): 159-173.
88 GEORGIEV S, STEIN H J, HANNAH J L, et al. Hot acidic Late Permian seas stifle life in record time[J]. Earth and Planetary Science Letters, 2011, 310(3): 389-400.
89 VANACKEN D, THOMSON D, RAINBIRD R H, et al. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: Rhenium-Osmium dating of black shales from the Wynniatt and Boot Inlet Formations[J]. Precambrian Research, 2013,236:124-131.
90 SELBY D, CREASER R A, DEWING K, et al. Evaluation of bitumen asa 187Re-187Os geochronometer for hydrocarbon maturation and migration: A case study from the Polaris MVT deposit,Canada[J].Earth and Planetary Science Letters,2005, 235(1-2): 1-15.
91 FINLAY A J, SELBY D, OSBORNE M. J. Petroleum source rock identification of United Kingdom Atlantic Margin oil fields and the Western Canadian Oil Sands using Platinum, Palladium, Osmium and Rhenium: Implications for global petroleum systems[J].Earth and Planetary Science Letters,2012, 313-314:95-104.
92 蔡长娥,邱楠生,徐少华.Re-Os同位素测年法在油气成藏年代学的研究进展[J].地球科学进展,2014,29(12):1362-1371.
CAI C E, QIU N S, XU S H. Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation[J]. Advances in Earth Science, 2014, 29(12): 1362-1371.
93 CUMMING V M, SELBY D, LILLIS P G, et al. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56.
94 GE X, SHEN C, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, G37666. 37661.
95 GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, Northern Sichuan Basin, China: Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis[J].AAPG Bulletin, 2018, 102(8):1429-1453.
96 GE X, SHEN C, SELBY D, et al. Petroleum evolution within the Tarim Basin, northwestern China: Insights from organic geochemistry, fluid inclusions, and rhenium-osmium geochronology of the Halahatang Oil Field[J]. AAPG Bulletin, 2020,104: 329-355.
97 LIU J, SELBY D, OBERMAJER M, et al. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, Western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657.
98 沈传波, 刘泽阳, 肖凡, 等. 石油系统Re—Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2):187-195.
SHEN C B, LIU Z Y, XIAO F, et al. Advancements of the research on Re-Os isotope system in petroleum system[J]. Advances in Earth Science, 2015, 30(2):187-195.
99 SMOLLAR M I, WALKER R J, MORGAN J W, et al. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites[J]. Science, 1996, 271: 1099.
100 SELBY D, CREASER R A. Re-Os geochronology of organic rich sedments: An evaluation of organic matter analysis methods[J]. Chemical Geology, 2003, 200: 225-240.
101 STEIN H J. Dating and Tracing the History of Ore Formation [J]. Treatise on Geochemistry (Second Edition), 2014, 13: 87‐118.
102 ZHU G Y, ZHANG S C, SU J, et al. The occurrence of ultra-deep heavy oils in the Tabei Uplift of the Tarim Basin, NW China [J]. Organic Geochemistry, 2012, 52: 88-102.
103 李秋立. U—Pb定年体系特点和分析方法解析[J]. 矿物岩石地球化学通报, 2015, 34(3):491-500.
LI Q L. Characteristics and analytical methods of the U-Pb dating system[J].Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(3):491-500.
104 刘恩涛, ZHAO JIANXIN, 潘松圻, 等. 盆地流体年代学研究新技术: 方解石激光原位U—Pb定年法[J]. 地球科学:中国地质大学学报, 2019, 44(3): 698-712.
LIU E T, ZHAO J X, PAN S Q, et al. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite[J]. Earth Science:Journal of China University of Geosciences, 2019, 44(3): 698-712.
105 MOORBATH S, TAYLOR P N, ORPEN J L, et al. First direct radiometric dating of archean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867.
106 BABINSKI M, CHEMALE F, VAN SCHMUS W R. The Pb/Pb age of the minas supergroup carbonate rocks, Quadrilatero Ferrifero, Brazil[J]. Precambrian Research, 1995, 72(3-4): 235-245.
107 JAHN B M, SIMONSON B M. Carbonate Pb-Pb ages of the Wittenoom Formation and carawine dolomite, Hamersley Basin, Western Australia (with implications for their correlation with the Transvaal dolomite of South Africa)[J]. Precambrian Research, 1995, 72(3): 247-261.
108 SMITH P E, FARQUHAR R M, HANCOCK R G. Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite[J].Earth and Planetary Science Letter, 1991, 105(4): 474-491.
109 LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83.
110 ROBERTS N M W, RASBURY E T, PARRISH R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814.
111 沈安江, 胡安平, 程婷, 等. 激光原位 U—Pb 定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1-13.
SHEN A J, HU A P, CHENG T, et al. Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1-13.
112 COOGAN L A, PARRISH R R, ROBERTS N M W. Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating[J]. Geology, 2016, 44(2): 147-150.
113 GODEAU N, DASCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250.
114 ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
115 HANSMAN R J, ALBERT R, GERDEX A, et al. Absolutely ages of multiple generations of brittle structures by U-Pb dating of calcite[J]. Geology, 2018, 46(3): 207-210.
116 郭小文, 陈家旭, 袁圣强,等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束——以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291.
GUO X W, CHEN J X, YUAN S Q, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020,41(3): 284-291.
117 OSBORN S G, MAINTOSH J C, HANOR J S, et al. Iodine-129, 87Sr/86Sr, and trace elemental geochemistry of northern Appalachian Basin brines: Evidence for basinal-scale fluid migration and clay mineral diagenesis[J]. Ametican Journal of Science, 2012, 312: 263-287.
118 CHEN J, LIU D Y, PENG P A, et al. Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan Oilfield, Tarim Basin[J]. Applied Geochemistry, 2016, 10(12): 14-21.
119 FEHN U. Tracing crustal fluids: Applications of natural 129I and 36Cl[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 45-67.
120 SCHWEHR K A, SANTSCHI P H, MORAN J E, et al. Near-conservative behavior of 129I in the Orange County aquifer system, California[J]. Applied Geochemistry, 2005, 20(8): 1461-1472.
121 FEHN U, PETERS E K, TULLAI-FITZPATRICK S, et al. 129I and 36Cl concentrations in waters of the eastern Clear Lake area, Califorinia: Residence times and source ages of hydrothermal fluids[J].Geochimica et Cosmochimica Acta, 1992, 56: 2069-2079.
122 FEHN U, SNYDER G T. Residence times and source ages of deep crustal fluids: Interpretation of 129I and 36Cl results from the KTB-VB drill site,Germany[J].Geofluids,2005,5: 42-51.
123 JENSENIUS J, BURRUSS R C. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusionsin calcite cements from Danish North Sea oil fields[J]. Geochimica et Cosmochimica Acta, 1990, 54: 705-713.
124 MORAN J E, FEHN U, HANOR J S. Determination of soure ages and migration patterns of brine from the U.S. Gulf Coast basin using 129I[J]. Geochimica et Cosmochimica Acta, 1995, 59: 5055-5069.
125 CORRENS C W. The geochemistry of the halogens[J]. Physics and Chemistry of the Earth, 1956, 1: 181-233.
126 COLLINS A G. Chemistry of some Anadarko basin brines containing high concentration of iodine[J]. Chemical Geology, 1969, 4: 169-187.
127 PRICE N B, CALVERT S E. The geochemistry of iodine in oxidized and reduced recent marine sediments[J]. Geochimica et Cosmochimica Acta, 1973, 37: 2149-2158.
128 MANI D, KUMAR T S, Rasheed M A, et al. Soil iodine determination in Deccan Syneclise, India: Implications for near surface geochemical hydrocarbon prospecting[J]. Natural Resources Research, 2011, 20(1): 75-88.
129 ADIL Ö. Relationships of formation, migration and trapping between petroleum and iodine[J]. Natural and Engineering Sciences, 2018, 3(3): 110-153.
130 CHEN J, LIU D Y, HOU X L, et al. Origin and evolution of oilfield waters in the Tazhong Oilfield, Tarim Basin, China, and their relationship to multiple hydrocarbon charging events[J]. Marine & Petroleum Geology, 2018, 98: 554-568.
[1] LIU Wen-hui,WANG Jie,TAO Cheng,HU Guang,LU Long-fei,WANG Ping. The Geochronology of Petroleum Accumulation of China Marine Sequence [J]. Natural Gas Geoscience, 2013, 24(2): 199-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] .
THE APPLICATION OF MICRO EARTHQUAKE MONITORING THEGAS INJECTION ADVANCING EDGE IN THE YAHA CONDENSATE GAS RESERVOIR
[J]. Natural Gas Geoscience, 2005, 16(3): 390 -393 .
[2] WANG Wan-chun,LIU Wen-hui, LIU Quan-you. ANALYSES OF THE CARBON ISOTOPIC GEOCHEMISTRY OF THEMIX-SOURCED SHALLOW RESERVOIR NATURAL GAS IDENTIFICATION[J]. Natural Gas Geoscience, 2003, 14(6): 469 -473 .
[3] JIANG Hou-shun,BAI Yan-hua,RAN Jian-li . PREDICTION OF HORIZONTAL WELL DELIVERABILITY ANDOPTIMIZATION OF PERFORATION PARAMETERS[HJ0][J]. Natural Gas Geoscience, 2007, 18(6): 891 -893 .
[4] LIU Jian-Feng, PENG Jun, ZHOU Kang, YAN Xiao-Mei, TANG Yong, LIU Jin-KuKu. High Resolution Sequence Stratigraphy Analysis of 2nd Member of Xujiahe Formation in Middle and South Sichuan Transitional Zone[J]. Natural Gas Geoscience, 2009, 20(2): 199 -203 .
[5] GUO Zhen-hua, ZHAO Yan-Chao. Logging Evaluation to Tight Gas Reservoir in He-2 Member of Daniudi Gas Field[J]. Natural Gas Geoscience, 2010, 21(1): 87 -94 .
[6] WANG Ming-Yan, GUO Jian-Hua, KUANG Li-Xiong, ZHU Rui. Geochemical Characteristics and Evolution of the Hydrocarbon  Source Rocks from Lianyuan Depression in the Middle of Hunan Province[J]. Natural Gas Geoscience, 2010, 21(5): 721 -726 .
[7] SONG Qi, WANG Shu-Li, CHEN Yan, ZHENG Zhi, XIE Lei. A New Kinetic Model and Experiment for Natural Gas Hydrate[J]. Natural Gas Geoscience, 2010, 21(5): 868 -874 .
[8] ZHAO Jing-Zhou. Conception, Classification and Resource Potential of Unconventional Hydrocarbons[J]. Natural Gas Geoscience, 2012, 23(3): 393 -406 .
[9] JI Li-Ming, LUO Peng. Effect of Sample Size on Volumetric Determination of Methane Adsorption in Clay Minerals[J]. Natural Gas Geoscience, 2012, 23(3): 535 -540 .
[10] YOU Li-jun, LI Lei, KANG Yi-li, SHI Yu-jiang, ZHANG Hai-tao, YANG Xiao-ming. Gas Supply Capacity of Tight Sandstone in Considering Effective Stress and Water Saturation[J]. Natural Gas Geoscience, 2012, 23(4): 764 -769 .