Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (10): 1501-1514.doi: 10.11764/j.issn.1672-1926.2020.06.011

Previous Articles     Next Articles

Characteristics of pores and controlling factors of Lower Permian shales in Southern North China Basin

Yan-jie LIU1,2,3(),Dang-xing CHENG4,5,Qing-lun QIU2,3,Ji-chang WENG6,Xiao-yu WANG2,3,Li-jun GUO7,Peng-peng LI8,Xin-chuan LU8()   

  1. 1.Henan Institute of Geological Sciences,Zhengzhou 450001,China
    2.Henan Institute of Geological Survey,Zhengzhou 450001,China
    3.Henan Industry & Technology Innovation Strategy Alliance of Underground Clean Energy Exploration and Development,Zhengzhou 450000,China
    4.Research Institute of Exploration and Development,PetroChina Changqing Oilfieid Company,Xi’an 710018,China
    5.National Engineering Laboratory for Exploration and Development of Low?Permeability Oil & Gas Fields,Xi’an 710018,China
    6.Henan Yukuang Geological Exploration Investment Co. Ltd. ,Zhengzhou 450012,China
    7.Exploration and Development Research Institute,PetroChina Qinghai Oilfield Company,Dunhuang 736200,China
    8.Northweest Institute of Eco?Environment and Resources,CAS,Lanzhou 730000 China
  • Received:2020-05-25 Revised:2020-06-30 Online:2020-10-10 Published:2020-09-30
  • Contact: Xin-chuan LU E-mail:liuyanjie111@163.com;xclu@lzb.ac.cn
  • Supported by:
    The Major Scientific and Technological Projects in Henan Province, China (Grant No. 151100311000);The China National Science & Technology Major Project(Grant No. 2017ZX05001002-008);The Project of Academic Department of Chinese Academy of Sciences(Grant No. E0290803).

Abstract:

The key step in evaluating shale gas reservoir capacity and feasibility of shale gas exploitation is the research on pore characteristics of shale. By means of field emission electron microscopy, low temperature nitrogen adsorption, X-ray diffraction, organic carbon (TOC) content and vitrinite reflectance (RO), the paper investigates the pore characteristics and controlling factors of Permian shale from Well MY1 in Southern North China Basin. The results show that the pore types of Lower Permian shale are intergranular pores, inter-crystal pores, organic pores, dissolution pores on the surface of mineral particles and micro-fractures, in which inter-crystal pores of pyrite, intergranular pores of clay mineral polymer, organic-clay mineral combined pores and contraction joints of organic matters are relatively developed, and dissolution pores on the surface of mineral particles is not developed. Pore volume is in the range of 0.004 0~0.052 8 cm3/g, with a mean of 0.019 62 cm3/g; specific surface area ranges from 1.198 9 m2/g to 26.525 7 m2/g, on average of 9.506 m2/g; average pore diameter is within 2.35~14.38 nm, with an average of 8.68 nm. Pore volume and specific surface area of shales increase synchronously, while pores within different pore diameters makes different contributions to pore volume and specific surface area of shales, such as pores with pore size more than 10 nm mainly contribute to pore volume and with pore size less than 10 nm mainly contribute to specific surface area. Unimodal distributions for the incremental curves of pore volume and specific surface area with increasing pore diameter can be observed. The content of organic matter and the types of minerals and their respective contents jointly govern pore developed conditions.

Key words: Characteristics of porosity, N2 adsorption, Lower Permian shale, Well MY1, Southern North China Basin

CLC Number: 

  • TE122.2+3

Fig.1

Tectonic setting and geological map of the Well MY1 at the Southern North China Basin(modified by Ref.[9])"

Fig.2

The map of general column of Well MY1 at the Southern Northern China Basin"

Fig.3

The various mineral concentrations of shales of Well MY1 at the Southern Northern China Basin"

Fig.4

Field emission scanning electron microscope images of shale pores of Well MY1 at Southern Northern China Basin"

Fig.5

Low temperature liquid N2 adsorption/desorption isotherms"

Table 1

Results of pore structural parameters"

样品编号孔体积/(cm3/g)比表面积/(cm2/g)平均孔径/nm样品编号孔体积/(cm3/g)比表面积/(cm2/g)平均孔径/nm
JY-10.008 72.704 412.85JY-250.009 34.104 59.08
JY-20.008 95.441 36.55JY-260.020 011.996 96.66
JY-30.010 74.708 59.08JY-270.033 119.079 76.94
JY-40.012 44.382 111.35JY-280.023 010.444 18.81
JY-60.018 48.738 88.41JY-320.033 019.230 86.86
JY-70.018 08.879 98.12JY-330.052 826.525 77.96
JY-80.016 96.444 210.02JY-340.010 916.638 72.35
JY-90.016 05.388 311.36JY-380.031 38.429 314.38
JY-100.013 55.648 39.55JY-390.009 86.947 33.86
JY-110.019 37.051 910.94JY-410.036 913.319 110.76
JY-120.013 75.788 39.43JY-420.004 01.198 911.82
JY-130.016 07.789 48.19JY-450.017 26.655 69.93
JY-140.012 37.219 76.85JY-480.017 78.803 57.87
JY-160.009 65.834 16.60JY-500.009 23.044 911.59
JY-170.011 16.113 87.25JY-520.021 311.931 07.24
JY-190.014 110.876 55.18JY-530.026 010.545 09.36
JY-220.028 111.494 79.52JY-540.033 316.270 28.15
JY-230.021 36.904 211.46JY-550.030 616.938 66.83

Fig. 6

Plot of pore volume and specific surface area"

Fig. 7

Plots of average pore diameter versus pore volume and specific surface area"

Fig. 8

Increaments of pore volume and specific surface area as a function of pore diameter"

Fig. 9

Plots of shale compositions versus pore volume, specific surface area and Langmuir volume"

Fig.10

The various clay mineral concentrations of shales of Well MY1 at the Southern North China Basin"

Fig. 11

Pyrite associated with organic matter"

1 魏建光, 唐书恒, 张松航, 等. 宁武盆地山西组过渡相页岩孔隙特征及影响因素[J].煤田地质与勘探,2018,46(1): 78-85.
WEI J G, TANG S H, ZHANG S H, et al. Analysis on characteristics and influence factors of transitional facies shale pore in Ningwu Basin[J]. Coal Geology & Exploration, 2018, 46(1): 78-85.
2 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-130.
WANG S Q. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industy, 2017, 37(6): 115-130.
3 赵宏图. 世界页岩气开发现状及其影响[J]. 现代国际关系, 2011(12): 44-49.
ZHAO H T. World shale gas development status and its inpact[J]. Contemporacy International Relations, 2011(12): 44-49.
4 李建忠, 董大忠, 陈更生, 等. 中国页岩气资源前景与战略地位[J]. 天然气工业, 2009, 29(5): 11-16,134.
LI J Z, DONG D Z, CHEN G S, et al. Prospects and strategic position of shale gas resources in China[J]. Natrual Gas Industry, 2009, 29(5): 11-16,134.
5 戴金星, 董大忠, 倪云燕, 等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
DAI J X, DONG D Z, NI Y Y, et al. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
6 杨燕青, 张小东, 许亚坤, 等. 豫东地区煤系烃源岩有机质特征与煤系气资源潜力[J]. 煤田地质与勘探, 2019, 47(2): 111-120.
YANG Y Q, ZHANG X D, XU Y K, et al. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. Coal Geology & Exploration, 2019, 47(2): 111-120.
7 张小东, 张硕, 许亚坤, 等. 基于模糊数学的豫东煤系气资源勘探有利区预测[J]. 煤炭科学技术, 2018, 46(11): 172-181.
ZHANG X D, ZHANG S, XU Y K, et al. Favorable block prediction of coal measure gas resource exploration in Eastern Henan area based on fuzzy mathematics[J]. Coal Science and Technology, 2018, 46(11): 172-181.
8 张小东, 朱春辉, 林俊峰, 等. 豫东马桥详查区煤系气成藏地质特征[J]. 河南理工大学学报:自然科学版, 2018, 37(5): 40-46.
ZHANG X D, ZHU C H, LIN J F, et al. Geological reservoir properties of coal measures gas in Maqiao survey area of eastern Henan province[J]. Journal of Henan Polytechnic University: Natural Science, 2018, 37(5): 40-46.
9 邱庆伦, 李中明, 冯辉, 等. 河南中牟区块太原组-山西组页岩气富集控制因素[J]. 地质与资源, 2018, 27(5): 472-479.
QIU Q L, LI Z M, FENG H, et al. Controlling factors of the shale gas enrichment in Taiyuan and Shanxi Formations of zhongmu block,Henan Province[J]. Geology and Resources, 2018, 27(5): 472-479.
10 冯辉, 邱庆伦, 汪超, 等. 南华北盆地中牟凹陷太原组—山西组页岩气成藏特征——以河南中牟区块ZDY2井为例[J]. 地质找矿论丛, 2019, 34(2): 213-218.
FENG H, QIU Q L, WANG C, et al. The shale gas accumulation characteristics of Taiyuan and Shanxi Formation in Zhongmu sag in basins in south of the north China: In case of well ZDY2 off Zhongmu block, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(2): 213-218.
11 李俊, 唐书恒, 郎雨, 等. 华北过渡相页岩气储层微观孔隙结构特征:以山西省文水地区为例[J]. 中国矿业, 2015, 24(): 112-118.
LI J, TANG S H, LANG Y, et al. Chatacteristics of micro-scale pore structures of shale gas resources in transitional facies of north china: A case study of Wenshui area in Shanxi Province[J]. China Mining Magazine, 2015, 24(supplement 2): 112-118.
12 姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发, 2020, 47(3): 617-628.
JIANG Z X, SONG Y, TANG X L, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.
13 HU G, PANG Q, JIAO K, et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology, 2020, 116: 104314.
14 LI Y, YANG J, PAN Z, et al. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images[J]. Fuel, 2020, 260: 116352.
15 ANDREWS G D M, BROWN S R, MOORE J, et al. The transition from planar to en echelon morphology in a single vein in shale: Insights from X-ray computed tomography scanning[J]. Geosphere, 2020, 16(2): 646-659.
16 CLARKSON C R, SOLANO N R, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103(1): 606-616.
17 张小东, 李朋朋, 张硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术, 2016, 44(9): 93-98.
ZHANG X D, LI P P, ZHANG S. Gas emission features of coals with different coalbody structure and their influencing mechanism[J]. Coal Science and Technology, 2016, 44(9): 93-98.
18 LI P, ZHANG X, ZHANG S. Structures and fractal characteristics of pores in low volatile bituminous deformed coals by low-temperature N2 adsorption after different solvents treatments[J]. Fuel, 2018, 224: 661-675.
19 LIU Z, LIU D, CAI Y, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.
20 吴伟, 王雨涵, 曹高社, 等. 南华北盆地豫西地区C—P烃源岩地球化学特征[J].天然气地球科学, 2015, 26(1): 128-136.
WU W, WANG Y H, CAO G S, et al. The geochemical characteristics off the carboniferous and permian source rocks in the western Henan, the southern north China basin[J]. Natrual Gas Geosicence, 2015, 26(1): 128-136.
21 徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学, 2004, 28(4): 450-463.
XU H L, ZHAO Z J, LV F L, et al. Tectonic evolution of the nanhuabei area and analysis about its petroleum potential[J]. Geotectonica et Metallogenia, 2004, 28(4): 450-463.
22 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
23 SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
24 张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017, 41(1): 11-24.
ZHANG J K, HE S, YAN X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Natural Science, 2017, 41(1): 11-24.
25 TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
26 李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报, 2017, 35(2): 315-329.
LI C C, ZHOU S X, LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 315-329.
27 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
28 吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adorption properties of common clay mineral by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2): 249-256.
29 栾国强, 董春梅, 马存飞, 等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报, 2016, 34(6): 1208-1216.
LUAN G Q, DONG C M, MA C F, et al. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1208-1216.
30 刘子驿,张金川,刘飏,等.湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J].科学技术与工程,2016,16(26):34-41.
LIU Z Y, ZHANG J C, LIU Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41.
[1] Yi-hua XIONG, Shang-wen ZHOU, Peng-fei JIAO, Ming-wei YANG, Jun-ping ZHOU, Wei WEI, Jian-chao CAI. Fractal analysis of micropore structures in coal and shale based on low-temperature CO2 adsorption [J]. Natural Gas Geoscience, 2020, 31(7): 1028-1040.
[2] Xi Zhao-dong,Tang Shu-heng,Li Jun,Li Lei. Investigation of pore structure and fractal characteristics of marine-continentaltransitional shale in the east-central of Qinshui Basin [J]. Natural Gas Geoscience, 2017, 28(3): 366-376.
[3] Zhang Jiao-dong,Zeng Qiu-nan,Zhou Xin-gui,Liu Xu-feng,Zhang Hong-da,Wang Yu-fang,Bi Cai-qin,Cao Jian-kang,Du Jian-bo,Yu Ming-de,Zhang Yang,Chang Da-yu,Wang Fu-bin,Miao Hui-xin. Drilling achievements and gas accumulation in the Upper Paleozoic in western new area of Taikang Uplift,Southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1637-1649.
[4] Li Zhen-sheng,Li Jian-Xun,Wang Chuang,Jia Chao,Zhang Jiao-dong. Comprehensive analysis of Neoproterozoic and Lower Palaeozoicmarine source rocks in southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1699-1713.
[5] CHEN Yan-yan,ZOU Cai-neng,Maria Mastalerz,ZHU Ru-kai,BAI Bin,YANG Zhi. Porosity and Fractal Characteristics of Shale across a Maturation Gradient [J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.
[6] WU Wei,WANG Yu-han,CAO Gao-she,HUANG Xue-feng,LIU Wei-qing. The Geochemical Characteristics of The Carboniferous and Permian Source Rocks in the Western Henan,the southern North China Basin [J]. Natural Gas Geoscience, 2015, 26(1): 128-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Jun-zhang,SHI He-sheng,SHU Yu,DU Jia-yuan,LUO Jun-lian. HEATING AND PRESSING SIMULATION EXPERIMENTS OF TYPICAL SOURCE ROCKS OF ZHU 1 DEPRESSION--DISCUSSION OF MODES OF HYDROCARBON GENERATION AND EXPELLATION AND TOC RECOVERY COEFFICIENTS[J]. Natural Gas Geoscience, 2006, 17(4): 573 -578 .
[2] WAN Yan-rong,YANG Zhan-long, WEI Li-hua, HUANG Yun-feng,GUO Jing-yi, LI Zai-gu. SEDIMENTARY FACIES FEATURES OF SANJIANFANG AND QIKETAI FORMATIONOF MIDDLE JURASSIC IN NORTH OF TAIBEI, TUHA BASIN[J]. Natural Gas Geoscience, 2006, 17(5): 693 -697 .
[3] . METHODS OF REBUILDING WELL REN-11 BURIED HILL OIL RESERVOIR AS UNDERGROUND GAS STORAGE[J]. Natural Gas Geoscience, 2004, 15(4): 406 -411 .
[4] . THE CONTROLS AND THE ASSESSMENT METHOD FOR THE EFFECTIVENESS OF NATURAL GAS  MIGRATION AND ACCUMULATION PROCESS[J]. Natural Gas Geoscience, 2005, 16(1): 1 -6 .
[5] . [J]. Natural Gas Geoscience, 1997, 8(3): 9 -17 .
[6] . THE CHARACTERISTICS OF SEDIMENTARY MICROFACIES AND RELATIONSHIPBETWEEN SEDIMENTARY MICROFACIES AND RESERVOIR PROPERTY INLOWER SECTION OF MINGHUAZHEN FORMATION SHENGTUO GAS FIELD[J]. Natural Gas Geoscience, 2004, 15(3): 257 -260 .
[7] HUANG Yan-qing,ZHANG Chang-min,TANG Jun,HOU Du-jie,YU Ming-fa. SEDIMENTARY MICROFACIES AND OIL-BEARING PROBABILITY OF LOWER KELAMAYI FORMATION IN LIUZHONG DISTRICT OF KELAMAYI OILFIELD[J]. Natural Gas Geoscience, 2007, 18(1): 67 -70 .
[8] ZENG De-ming,WANG Xing-zhi,KANG Bao-ping. A STUDY ON CEMENT IN PRIMARY PORE OF THE LEIKOUPO FORMATION RESERVOIR IN THE NORTHWEST OF SICHUAN BASIN[J]. Natural Gas Geoscience, 2006, 17(4): 459 -462 .
[9] . [J]. Natural Gas Geoscience, 2002, 13(3-4): 52 -54 .
[10] Liu Hua-qing,Li Xiang-bo,Bai Yun-lai,Li Tian-shun. PRESENT SITUATION OF EXPLOITATION and PRODUCTION  AND RESOURCES POTENTIAL FOR OIL-GAS IN GANSU PROVINCE, CHINA[J]. Natural Gas Geoscience, 2006, 17(5): 612 -615 .