Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (12): 1663-1676.doi: 10.11764/j.issn.1672-1926.2020.06.009

    Next Articles

Accumulation condition and model of buried hill in the Central Uplift, Songliao Basin

Shi-wei YI1(),Ming-peng LI1(),Shu-juan XU1,Xu-jie GUO2,Bao-wen CUI3,Qi-an MENG3,Hong-gang CHENG1,Xue-qiong WU1,Jun-feng CUI1,Li-xian WANG4   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Exploration & Production Company,Beijing 100007,China
    3.Exploration Department of Daqing Oilfield Company,Daqing 163000,China
    4.Exploration Department of Jilin Oilfield Company,Songyuan 138000,China
  • Received:2020-04-29 Revised:2020-06-23 Online:2020-12-10 Published:2020-12-11
  • Contact: Ming-peng LI E-mail:ktb_ysw@petrochina.com.cn;limingpeng@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05007-003)

Abstract:

The Central Uplift of Songliao Basin is a large positive buried hill tectonic belt clamped between the east and west rift zones, developed several hydrocarbon-rich sags such as Xujiaweizi, Changling, etc., located in a favorable area of oil and gas multi-period accumulation, therefore the central uplift has superior conditions for hydrocarbon accumulation. According to contact relation of uplift and rift, combination of migration passage, the hydrocarbon supply style can be divided into six types including fault-fault bilateral consequent type, fault-fault bilateral reverse type, fault-fault one consequent and one reverse type, fault-overlap bilateral consequent type, fault-overlap one consequent and one reverse type and overlap-overlap bilateral consequent type. And the passage system can be divided into five types including fault-network fracture type, glutenite-fault-network fracture type, fault-unconformity-network fracture type, glutenite-unconformity-network fracture type, and glutenite-fault-network fracture-unconformity type. Accumulation and evolution model of the central uplift can be divided into four stages, including fold basement denudated stage, rift-uplift coupled weathering-leaching stage, Central Uplift capping and accumulation stage and Central Uplift stable preservation stage. By analyzing and contrasting accumulation model of the central uplift, the uplift between hydrocarbon-rich sags of fault depression period have the same accumulation condition and have beneficial exploration potential, and are the successive domain in oil and gas exploration, thus buried hill and internal are the main breakthrough target.

Key words: Songliao Basin, Central Uplift, Hydrocarbon supply style, Passage system, Buried hill and internal, Accumulation model

CLC Number: 

  • TE122.1

Fig.1

Tectonic units division and comprehensive stratigraphic column in fault depression period, Songliao Basin"

Fig.2

Reservoir development model of bedrock in Songliao Basin"

Fig.3

Connecting-well section of cap rock from Wells Litan 1, Zhaoshen 3, Longtan 2, Longtan 1 to Wang 902"

Fig.4

Thickness of mudstones from 2nd member to 3rd member of Denglouku Formation in north of the Central Uplift①"

Fig.5

Hydrocarbon supply style of the Central Uplift, Songliao Basin"

Fig.6

Passage system of the Central Uplift, Songliao Basin"

Fig.7

Geochemical characteistics and homogenization temperatures of inclusions in the Central Uplift, Songliao Basin"

Fig.8

Gas reservoir section from Gulong Depression, Central Uplift to Xujiaweizi Depression, Songliao Basin"

Fig.9

Tectonic evolution and accumulation model in the Central Uplift, Songliao Basin"

Fig.10

Burial thermal evolution history of the intersection between line 970 and trace 2 300 in Xuzhong Sag"

Fig.11

Seismic section from Gulong Depression, Central Uplift to Xujiaweizi Depression, Songliao Basin"

Fig.12

Stereo display of the Central Uplift and periphery in Songliao Basin"

Fig.13

Accumulation model of Yingshan West Uplift between Xujiaweizi Depression and Yingshan Depression, Songliao Basin"

Fig.14

Accumulation model of Duiqingshan Uplift between Yingshan Depression and Shuangcheng Depression, Songliao Basin"

1 侯启军,冯志强,冯子辉,等.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:1-15.
HOU Q J, FENG Z Q, FENG Z H, et al. Continental Petroleum Geology in Songliao Basin[M].Beijing: Petroleum Indu-stry Press,2009:1-15.
2 杜金虎. 松辽盆地中生界火山岩天然气勘探[M]. 北京: 石油工业出版社, 2010:1-187.
DU J H. Natural Gas Exploration of Mesozoic Volcanic Rocks in Songliao Basin[M].Beijing:Petroleum Industry Press,2010: 1-187.
3 李景坤,冯子辉,刘伟,等.松辽盆地徐家围子断陷深层天然气成藏期研究[J].石油学报,2006, 27(supplement):42-46.
LI J K, FENG Z H, LIU W, et al. Research on reservoir-forming time of deep natural gas in Xujiaweizi faulted-depression in Songliao Basin[J]. Acta Petrolei Sinica, 2006,27(supplement):42-46.
4 王民,孙业峰,王文广,等. 松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力[J]. 天然气地球科学,2014,25(7):1011-1018.
WANG M, SUN Y F, WANG W G, et al. Gas generation characteristics and resource potential of the deep source rock in Xujiaweizi fault depression, northern Songliao Basin[J]. Natural Gas Geoscience, 2014,25(7):1011-1018.
5 杜金虎. 松辽盆地中央古隆起带(北部)天然气成藏条件分析及勘探前景[J]. 中国石油勘探,2017,22(5):1-14.
DU J H. Analysis of natural gas accumulation conditions and exploration perspective in the central paleo-uplift belt (north), Songliao Basin[J].China Petroleum Exploration, 2017,22(5):1-14.
6 易士威,赵淑芳,范炳达,等. 冀中拗陷中央断裂构造带潜山发育特征及成藏模式[J].石油学报,2010,31(3):361-367.
YI S W, ZHAO S F, FAN B D, et al. Development characteristics of buried-hill and reservoir-forming pattern in central faulted structural belt of Jizhong Depression[J]. Acta Petrolei Sinica,2010,31(3):361-367.
7 马志宏. 大民屯凹陷前中生界基岩石油运聚模式探讨[J]. 石油地质与工程,2016,30(2):21-24.
MA Z H. Petroleum migration-accumulation pattern discussion of Pre-Mesoaoic bedrock in Damintun Sag[J]. Petroleum Geology and Engineering, 2016,30(2):21-24.
8 赵文智, 邹才能, 冯志强, 等. 松辽盆地深层火山岩气藏地质特征及评价技术[J].石油勘探与开发,2008,35(2):129-142.
ZHAO W Z, ZOU C N, FENG Z Q, et al. Geological features and evaluation techniques of deep-seated volcanic gas reservoirs, Songliao Basin[J]. Petroleum Exploration and Development, 2008, 35(2): 129-142.
9 蒙启安, 杨永斌, 金明玉. 断裂对松辽盆地庆深大气田的控制作用[J]. 石油学报, 2006, 27(s1): 14-17.
MENG Q A, YANG Y B, JIN M Y. Controlling role of faults to giant Qingshen Gas Field in SongLiao Basin[J]. Acta Petrolei Sinica, 2006, 27(s1): 14-17.
10 杨辉,张研,邹才能,等.松辽盆地深层火山岩天然气勘探方向[J]. 石油勘探与开发,2006,33(3):274-281.
YANG H, ZHANG Y, ZOU C N, et al. Exploration scheme of gas in deep-seated volcanic rocks in Songliao Basin[J]. Petroleum Exploration and Development, 2006,33(3):274-281.
11 赵泽辉,徐淑娟,姜晓华, 等. 松辽盆地深层地质结构及致密砂砾岩气勘探[J]. 石油勘探与开发,2016,43(1):12-23.
ZHAO Z H, XU S J, JIANG X H, et al. Deep strata geologic structure and tight conglomerate gas exploration in Songliao Basin,East China[J].Petroleum Exploration and Development, 2016,43(1):12-23.
12 周翔,舒萍,于士泉,等.松辽盆地徐深9区块营一段火山岩气藏储层特征及综合评价[J].天然气地球科学,2018,29(1):62-72.
ZHOU X, SHU P, YU S Q, et al. Reservoir characteristics and integrated evaluation of volcanic rock in member 1, Yingcheng Formation, Xushen 9, Songliao Basin[J]. Natural Gas Geoscience, 2018,29(1):62-72.
13 刘成林,金惠,高嘉玉, 等. 松辽盆地深层天然气成藏研究[J]. 油气地质与采收率,2009,16(1):1-4.
LIU C L, JIN H, GAO J Y, et al. Research on reservoir formation of deep natural gas in Songliao Basin[J]. Petroleum Geology and Recovery Efficiency, 2009,16(1):1-4.
14 刘学珍,王雪艳,钟安宁,等.松辽盆地徐家围子断陷沙河子组物源特征及对储集砂体的控制作用[J].天然气地球科学,2019,30(11):1551-1559.
LIU X Z, WANG X Y, ZHONG A N, et al. Characteristic of provenance and their control over sand bodies in Shahezi Formation of Xujiaweizi fault depression, Songliao Basin[J]. Natural Gas Geoscience,2019,30(11):1551-1559.
15 白雪峰,梁江平,张文婧,等. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学,2018,29(10):1443-1454.
BAI X F, LIANG J P, ZHANG W J, et al. Geologic conditions,resource potential and exploratory direction of deep gas in the northern Songliao Basin[J]. Natural Gas Geoscience, 2018,29(10):1443-1454.
16 王颖,邓守伟,范晶,等. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学,2018,29(10):1455-1464.
WANG Y, DENG S W, FAN J, et al. Natural gas geology,resource potential and favorable exploration direction in the south of Songliao Basin[J]. Natural Gas Geoscience, 2018,29(10):1455-1464.
17 徐立恒,卢双舫,陈践发,等. 徐家围子断陷深层烃源岩生气评价[J]. 石油学报,2008,29(6):846-852.
XU L H, LU S F, CHEN J F, et al. Gas-generation evaluation of deep hydrocarbon source rocks in Xujiaweizi fault depression[J]. Acta Petrolei Sinica, 2008,29(6):846-852.
18 宋振响,顾忆,路清华, 等. 松辽盆地梨树断陷天然气成因类型及勘探方向[J]. 石油学报,2016,37(5):622-630.
SONG Z X, GU Y, LU Q H, et al. Genetic types of natural gas and its exploration direction in Lishu fault sag,Songliao Basin[J]. Acta Petrolei Sinica, 2016,37(5):622-630.
19 宋振响,周卓明. 梨树断陷主力烃源岩判定及其地球化学特征[J]. 石油实验地质,2013,35(4):438-444.
SONG Z X, ZHOU Z M. Identification of chief hydrocarbon source rocks in Lishu fault depression and their geochemical characteristics[J]. Petroleum Geology & Experiment, 2013,35(4):438-444.
20 顾忆,秦都,路清华,等. 梨树断陷主力烃源岩与油源对比[J]. 石油实验地质,2013,35(6):662-667.
GU Y, QIN D, LU Q H, et al. Correlation of major source rocks and oil sources in Lishu Fault Depression[J]. Petroleum Geology & Experiment, 2013,35(6):662-667.
21 王继远,董清水,林冬萍,等.松辽盆地南部双辽断陷生储盖特征与成藏主控因素分析[J].世界地质,2017,36(1):166-173.
WANG J Y, DONG Q S, LIN D P, et al. Analysis of source-reservoir-cap association and major factors controlling hydrocarbon accumulation in Shuangliao Fault Depression,southern Songliao Basin[J]. Global Geology, 2017,36(1):166-173.
22 马峰,阎存凤,马达德,等. 柴达木盆地东坪地区基岩储集层气藏特征[J]. 石油勘探与开发, 2015,42(3):266-273.
MA F, YAN C F, MA D D, et al. Bedrock gas reservoirs in Dongping area of Qaidam Basin,NW China[J]. Petroleum Exploration and Development, 2015,42(3):266-273.
23 伍劲,高先志,马达德, 等. 柴达木盆地东坪地区基岩风化壳特征[J]. 现代地质,2017,31(1):129-141.
WU J, GAO X Z, MA D D, et al. Characteristics of the basement weathering crust in Dongping area,Qaidam Basin[J]. Geoscience, 2017,31(1):129-141.
24 孙秀建,杨巍,白亚东, 等. 柴达木盆地基岩油气藏特征与有利区带研究[J].特种油气藏,2018,25(6):49-54.
SUN X J, YANG W, BAI Y D, et al. Bedrock reservoir characterization and favorable zones in Qaidam Basin[J]. Special Oil and Gas Reservoirs, 2018,25(6):49-54.
25 付锁堂,马达德,汪立群, 等. 柴达木盆地昆北冲断带古隆起油藏特征及油气成藏条件[J]. 石油学报,2013,34(4):675-682.
FU S T, MA D D, WANG L Q, et al. Characteristics and accumulation conditions of paleo-uplift reservoirs in Kunbei thrust belt,Qaidam Basin[J]. Acta Petrolei Sinica, 2013,34(4):675-682.
26 伍劲,高先志,周伟, 等. 柴达木盆地东坪地区基岩风化壳与油气成藏[J].新疆石油地质,2018,39(6):666-672.
WU J, GAO X Z, ZHOU W, et al. Base rock weathering crusts and petroleum accumulation in Dongping area,Qaidam Basin[J]. Xinjiang Petroleum Geology,2018,39(6):666-672.
27 巨银娟,张小莉,张永庶, 等. 柴达木盆地昆北地区基岩储层裂缝特征[J]. 吉林大学学报:地球科学版,2016,46(6):1660-1671.
JU Y J, ZHANG X L, ZHANG Y S, et al. Fracture characteristics of bedrock reservoir in the north-Kunlun faults zone,Qaidam Basin[J]. Journal of Jilin University: Earth Science Edition,2016,46(6):1660-1671.
28 毛治国,崔景伟,綦宗金, 等. 风化壳储层分类、特征及油气勘探方向[J]. 岩性油气藏,2018,30(2):12-22.
MAO Z G, CUI J W, QI Z J, et al. Classification, characteristics and petroleum exploration of weathering crust reservoir[J]. Lithologic Reservoirs, 2018,30(2):12-22.
29 李富恒,侯连华,石磊,等. 花岗岩油气藏成藏富集因素[J]. 岩性油气藏,2017,29(1):81-89.
LI F H, HOU L H, SHI L, et al. Accumulation and enrichment factors of granite reservoirs[J]. Lithologic Reservoirs, 2017,29(1):81-89.
30 杨飞,徐守余. 全球基岩油气藏分布及成藏规律[J]. 特种油气藏,2011,18(1):7-11.
YANG F, XU S Y. Global distribution and hydrocarbon accumulation pattern of basement reservoirs[J]. Special Oil and Gas Reservoirs, 2011,18(1):7-11.
31 孙立东,孙国庆,杨步增,等.松辽盆地北部中央古隆起带古潜山天然气成藏条件[J].天然气工业,2020,40(3): 23-29.
SUN L D, SUN G Q, YANG B Z, et al. Hydrocarbon accumulation conditions of the buried hills in the central paleo-uplift belt of the northern Songliao Basin[J]. Natural Gas Industry, 2020,40(3):23-29.
32 吴孔友, 查明, 柳广弟. 准噶尔盆地二叠系不整合面及其油气运聚特征[J]. 石油勘探与开发,2002,29(2):53-57.
WU K Y, ZHA M, LIU G D. The unconformity surface in the Permian of Junggar Basin and the characters of oil-gas migration and accumulation[J]. Petroleum Exploration and Development,2002,29(2):53-57.
33 李治,秦启荣,李朋波,等. 准噶尔腹部火山岩风化壳储层特征及其影响因素[J]. 地质找矿论丛,2018,33(4):589-596.
LI Z, QIN Q R, LI P B, et al. Reservoir characteristics and influence factor of weathering volcanic crust:A case study of Carboniferous System of Shixi Oilfield in the center of Junggar Basin[J]. Contributions to Geology and Mineral Resources Research, 2018,33(4):589-596.
34 侯连华,邹才能,刘磊,等. 新疆北部石炭系火山岩风化壳油气地质条件[J]. 石油学报,2012,33(4):533-560.
HOU L H, ZOU C N, LIU L, et al. Geologic essential elements for hydrocarbon accumulation within Carboniferous volcanic weathered crusts in northern Xinjiang,China[J].Acta Pe-trolei Sinica, 2012,33(4):533-560.
35 张居和,方伟,李景坤,等.松辽盆地徐家围子断陷深层天然气成因类型及各种成因贡献[J].地质学报,2009,83(4),579-589.
ZHANG J H, FANG W, LI J K, et al. Deep gases and their genetic types of the Xujiaweizi Fault Depression zone, Songliao Basin and their contribution[J].Acta Geologica Sinica, 2009,83(4),579-589.
36 赵兴华. 松辽盆地徐家围子断陷天然气成因特征研究[D].武汉:长江大学,2015.
ZHAO X H. Study on the Origins of Natural Gas in the Xujiaweizi Rift Depression,Songliao Basin[D].Wuhan:Yangtze University,2015.
37 李景坤. 松辽盆地徐家围子断陷深层天然气成因和保存条件研究[D].北京:中国地质大学(北京),2010.
LI J K. Study on Deep Natural Gas Origins and Conservation Condition in Xujiaweizi Fault Depression of Songliao Basin[D]. Beijing: China University of Geosciences(Beijing),2010.
38 张义纲. 判别天然气的碳同位素方法[C]//有机地球化学论文集.北京:地质出版社,1987.
ZHANG Y G. Determination of carbon isotopes in natural gas[C]//Proceedings of Organic Geochemistry.Beijing: Geological Publishing House,1987.
39 张帆,冉清昌,吴玉明,等. 松辽盆地北部古中央隆起带天然气地球化学特征及成藏条件[J].天然气地球科学,2019,30(1):126-132.
ZHANG F, RAN Q C, WU Y M, et al. Geochemical characteristics and reservoir forming conditions of the natural gas in the paleo central uplift zone in the northern Songliao Basin[J]. Natural Gas Geoscience,2019,30(1):126-132.
40 卢双舫,谷美维,张飞飞,等. 徐家围子断陷沙河子组致密砂砾岩气藏的成藏期次及类型划分[J].天然气工业,2017,37(6):12-21.
LU S F, GU M W, ZHANG F F, et al.Hydrocarbon accumulation stages and type division of Shahezi Formation tight glutenite gas reservoirs in the Xujiaweizi Fault Depression, Songliao Basin[J]. Natural Gas Industry, 2017,37(6):12-21.
41 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013, 29 (2):339-353.
XU W L, WANG F, PEI F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J].Acta Petrologica Sinica,2013,29(2):339-353.
42 迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002:1-68.
CHI Y L, YUN J B, MENG Q A, et al. Mantle Framework, Basin Forming Dynamic and Hydrocarbon Migration and Accumulation in the Songliao Basin[M]. Beijing: Petroleum Industry Press,2002:1-68.
[1] Bin LI, Wen-hua MEI, Qi-qi LI, Qin-gong ZHUO, Xue-song LU, Qiang GUO. Influence of tectonic evolution of foreland basin in northwestern Sichuan Basin on Paleozoic marine hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(7): 993-1003.
[2] Shi-wei YI, Ming-peng LI, Shu-juan XU, Bao-wen CUI, Qi-an MENG, Xue-qiong WU, Hong-gang CHENG. Structural characteristics and hydrocarbon accumulation models of Shuangcheng Sag, Songliao Basin [J]. Natural Gas Geoscience, 2020, 31(6): 761-772.
[3] Dian-wei ZHANG, Zhi-liang HE, Gan-lu LI. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 428-435.
[4] Li Guo-hui, Kang De-jiang, Jiang Li-na, Jiang Hang, Li Miao, Sun Hai-lei, Wu Ying. Geological condition and sweet area selection of Fuyu Formation in the north of Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1106-1113.
[5] Wang Lan, Zeng Wen-ting, Xia Xiao-min, Zhou Hai-yan, Bi He, Shang Fei, Zhou Xue-xian. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression,Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.
[6] Guo-hui Li,Hai-lei Sun,Jin-wei Wang,De-jiang Kang,Li-juan Liu,Xing-wei Li,Jia-gang Shen. “Factory-like” horizontal well plan optimization techniques in tight oil exploration:Case study of Fuyu oil-bearing layer of Y63 well block, northern Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(11): 1619-1628.
[7] Zhang Fan, Ran Qing-chang, Wu Yu-ming, Ren Zhi-gao. Geochemical characteristics and reservoir forming conditions of the natural gas in the paleo central uplift zone in the northern Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(1): 126-132.
[8] Wang Jun, Gao Yin-shan, Wang Hong-jun, Wang Xin-xing, Bao Zhi-dong, Zhang Hong-jing. Identification of single channel sand body in the subaqueous distributarychannel compound sand bodies on the basis of forward simulation [J]. Natural Gas Geoscience, 2018, 29(9): 1310-1322.
[9] Zhong Xue-mei, Wang Jian, Li Xiang-yang, Wang Quan, Dong Xiong-ying, Ma Xue-feng, Zhang Guo-wei. Geological conditions,resource potential and exploration direction of natural gas in Jizhong Depression,Bohai Bay Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1433-1442.
[10] Bai Xue-feng, Liang Jiang-ping, Zhang Wen-jing, Fu Li, Peng Jian-liang, Xue Tao, Yang Li-wei, Liu Ji-ying. Geologic conditions,resource potential and exploratory direction of deep gas in the northern Songliao Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1443-1454.
[11] Wang Ying, Deng Shou-wei, Fan Jing, Zou Xiao-pin, Yang Jing. Natural gas geology,resource potential and favorable exploration direction in the south of Songliao Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1455-1464.
[12] Yang Hai-bo, Wang Yu-tao, Guo Jian-chen, He Wen-jun, Lan Wen-fang . Geological conditions,resource potential and exploration direction of natural gas in Junggar Basin [J]. Natural Gas Geoscience, 2018, 29(10): 1518-1530.
[13] Zhou Xiang,Shu Ping,Yu Shi-quan,Chen Xi. Reservoir characteristics and integrated evaluation of volcanic rock in member 1,Yingcheng Formation,Xushen 9 block,Songliao Basin [J]. Natural Gas Geoscience, 2018, 29(1): 62-72.
[14] Ren Li-hua,Dai Jun-jie,Lin Cheng-yan,Cao Zheng. Characteristics of overpressure and its geological significance for hydrocarbon of Qingshankou Formation in southern Fuxin Uplift,Songliao Basin [J]. Natural Gas Geoscience, 2017, 28(7): 1020-1030.
[15] Liang Jin-qiang,Fu Shao-ying,Chen Fang,Su Pi-bo,Shang Jiu-jing,Lu Hong-feng,Fang Yun-xin. Characteristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea [J]. Natural Gas Geoscience, 2017, 28(5): 761-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!