Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (7): 923-930.doi: 10.11764/j.issn.1672-1926.2020.04.030

Previous Articles     Next Articles

The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir

Bin-bin XI1,2(),Bao-jian SHEN1,2,Hong JIANG1,2,Zhen-heng YANG1,2,Xiao-lin WANG3   

  1. 1.Wuxi Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China
    2.SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
    3.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2019-12-20 Revised:2020-01-11 Online:2020-07-10 Published:2020-07-02
  • Supported by:
    China National Science and Technology Major Project(2017ZX05036)

Abstract:

The CH4-H2O-NaCl immiscible fluid inclusions are widely applied to determine the trapping temperature and pressure in natural gas reservior, and different methods are used for gas end member inclusions and aqueous end member inclusions. Two end member fluid inclusions in the same FIA (Fluid Inclusion Assemblage) were applied to determine the trapping temperature and pressure of CH4-rich fluid inclusions hosted in quartz-calcite veins in Silurian Longmaxi black shales from Well YA, southern Sichuan basin. Results show that the trapping temperature and pressure of these two end member fluid inclusions exhibit simlar ranges, which are from 212.0 ℃ to 220.7 ℃ and from 90 MPa to 152 MPa, respectively. The large variation in fluid pressure may result from the hydrocarbon-generating pressurization and fracture opening and healing process.

Key words: CH4-H2O-NaC system, Immiscible fluid inclusions, Trapping temperature, Trapping pressure, Southern Sichuan Basin, Shale gas

CLC Number: 

  • TE122.3

Fig.1

Schematic diagram showing the experimental setup for the Raman spectroscopic calibration of CH4 pressure"

Fig.2

Raman spectroscopic calibration curve for CH4 pressure"

Fig.3

The microphotograph of calcite-quartz veins in Longmaxi Formation black shales from Well YA"

Fig.4

Raman spectra of fluid inclusions in calcite-quartz veinsof Longmaxi Formation black shales from Well YA"

Fig.5

Histogram of homogenization temperature and salinity of inclusions in quartz-calcite vein"

Table 1

In situ Raman spectroscopic and microthermetric measurements of fluid inclusions, and the reconstruction of the trapping pressure"

序号包裹体类型νmeasCH4/cm-1

νmeasNe12??972.416

/cm-1

νmeasNe22??851.389

/cm-1

νcorrCH4/cm-1室温下内压/MPa冰点温度/℃气液比/%捕获温度/℃捕获压力/MPa
1富水溶液包裹体2 915.882 973.112 8522 915.225 2211.349-3.810.5217.5116.93
22 916.112 973.222 852.12 915.349 8510.844-3.810.2213111.13
32 915.862 972.842 851.692 915.493 8510.309-3.910.4213.1103.88
42 915.962 972.722 851.62 915.699 589.444-3.911.6220.791.06
5\\\\\-3.7/212\
6\\\\\-4/212.2\
7富气包裹体2 912.512 973.232 852.122 911.737 6138.444\/212~220.794.5~96.0
82 912.172 972.932 851.742 911.737 7238.444\/94.5~96.0
92 912.022 973.122 851.982 911.372 9944.98/109.7~112.6
102 9122 972.982 851.92 911.462 6942.81/104.8~107.5
112 911.442 973.12 851.952 910.818 663.29/148.2~151.8
122 911.642 973.32 852.162 910.813 5263.35/148.3~152.0
1 DUBESSY J, BUSCHAERT S, LAMB W, et al.Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins[J].Chemical Geology, 2001, 173(1-3):193-205.
2 DUAN Z, MAO S D. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2 000 bar[J].Geochimica et Cosmochimica Acta,2006,70(13):3369-3386.
3 刘斌.流体包裹体热力学[M].北京:地质出版社,1999,207-249.
LIU B. Fluid Entrapment Thermodynamics[M].Beijing: Geological Publishing House,1999:207-249.
4 LIU D H, DAI J X, XIAO X M, et al. High density methane inclusions in Puguang Gas Field: Discovery and a T-P genetic study[J].Chinese Science Bulletin, 2009, 54(24): 4714-4723.
5 髙键,何生,易积正.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J].石油与天然气地质,2015,36(3):472-480.
GAO J, HE S, YI J Z. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015, 36(3):472-480.
6 席斌斌,腾格尔,俞凌杰,等.川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J].石油实验地质,2016,38(4):473-479.
XI B B, TENGER, YU L J,et al.Trapping pressure of fluid inclusions and its significance in shale gas reservoirs south-eastern Sichuan Basin[J].Petroleum Geology & Experiment, 2016, 38(4):473-479.
7 席斌斌,余晓露,王杰,等.川东北元坝地区储层溶洞石英及白云石胶结物中包裹体特征及意义[J].地质学报,2017,91(9):2091-2104.
XI B B, YU X L, WANG J,et al.Characters and geological significance of fluid inclusions in quartz and dolomite cement of Yuanba gas reservoir, NE-Sichuan[J], Acta Geologica Sinica,2017,91(9):2091-2104.
8 QIU Y, WANG X L, LIU X, et al. In situ Raman spectroscopic quantification of CH4-CO2 mixture: Application to fluid inclusions hosted in quartz veins from the Longmaxi Forma-tion shales in Sichuan Basin,southwestern China[J].Petroleum Science, 2020,17:23-35.
9 MAO S D, HU J W, ZHANG D H,et al.Thermodynamic modeling of ternary CH4-H2O-NaCl fluid inclusions[J]. Chemical Geology Journal,2013,335(6):128-135.
10 FALL A,EICHHUBL P, CUMELLA S P, et al. Testing the basin-centered gas accumulation model using fluid inclusion observations:Southern Piceance Basin, Colorado[J]. AAPG Bulletin, 2012, 96(12):2297-2318.
11 FALL A, EICHHUBL P, BODNAR R J, et al.Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin,Colorado[J].Bulletin of the Geological Society of America, 2015, 127(1-2):61-75.
12 FALL A, BODNAR R J. How precisely can the temperature of a fluid event be constrained using fluid inclusions?[J]. Economic Geology, 2019, 113(8):1817-1843.
13 施伟军,席斌斌.应用包裹体技术恢复气藏古压力[J].石油实验地质,2016,38(1):128-134.
SHI W J, XI B B.Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology & Experiment,2016,38(1):128-134.
14 LU W J,CHOU I M,BURRUSS R C,et al.A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta,2007,71(16):3969-3978.
15 CHOU I M, SONG Y C, BURRUSS R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material[J]. Geochimica et Cosmochimica Acta, 2008, 72(21):5217-5231.
16 GOLDSTEIN R H, REYNOLDS T. Systematics of Fluid Inclusions in Diagenetic Minerals.SEPM Short Course[M]. Tulsa: Society for Sedimentary Geology, 1994:87-122.
17 DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta,1992, 56(7): 2605-2617.
18 HALL D L, STERNER S M, BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1):197-202.
19 曹海涛,詹国卫,余小群,等.深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例[J].天然气工业,2019,39(S1):118-122.
CAO H T,ZHAN G W,YU X Q,et al. The main factors affecting the productivity of deep shale gas wells-Take the Yongchuan Block in the south of Sichuan Basin as an example[J].Natural Gas Industry,2019,39(S1):118-122.
20 聂海宽,张金川,包书景,等.页岩气成藏体系研究——以四川盆地及其周缘下寒武统为例[J].西安石油大学学报:自然科学版, 2012, 27(3): 8-14.
NIE H K, ZHANG J C, BAO S J, et al. Study on the accumulation systems of shale gas: Taking the Lower Cambrian in Sichuan Basin and its periphery as an example[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2012, 27(3): 8-14.
21 郭彤楼,张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发,2014,41(1):29-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J].Petroleum Exploration and Development, 2014,41(1):29-36.
22 何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学, 2017, 28(5): 724-733.
HE Z L, HU Z Q, NIE H K,et al. Characterization of shale gas enrichment in Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience,2017,28(5):724-733.
23 腾格尔,申宝剑,俞凌杰,等.四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J].石油勘探与开发,2017,44(1):69-78.
TENGER, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
24 潘占昆,刘冬冬,黄治鑫,等.川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J]. 石油科学通报, 2019,4(3):242-253.
PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin[J]. Petroleum Science Bulletin, 2019, 4(3):242-253.
25 刘洪林,王红岩,方朝合,等.中国南方古老海相页岩气超压富集特征及勘探开发意义[J].非常规油气,2014,1(1): 11-16.
LIU H L, WANG H Y, FANG C H, et al. The characteristics of over-pressure reservoir for older South China marine shale and its significance for exploration[J]. Unconventional Oil & Gas, 2014,1(1): 11-16.
26 YANG R, HE S, HU Q H, et al. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China)[J]. International Journal of Coal Geology, 2017, 171(1):1-11.
27 李文,何生,张柏桥,等.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415.
LI W, HE S, ZHANG B Q, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415.
[1] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[2] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[3] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[4] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[5] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[6] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[7] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[8] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[9] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
[10] Lei-fu Zhang, Da-zhong Dong, Sha-sha Sun, Rong-ze Yu, Lin Li, Shi-yao Lin, Xiao-hu Ouyang, Zhen-sheng Shi, Jin Wu, Yan Chang, Chao Ma, Ning Li. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: Case study of Zhaotong national demonstration area of Yangtze region [J]. Natural Gas Geoscience, 2019, 30(9): 1332-1340.
[11] Meng⁃qi Zhang, Cai⁃neng Zou, Ping Guan, Da⁃zhong Dong, Sha⁃sha Sun, Zhen⁃sheng Shi, Zhi⁃xin Li, Zi⁃qi Feng, Lilamaocaidan. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area [J]. Natural Gas Geoscience, 2019, 30(9): 1349-1361.
[12] Wang Ke, Li Hai-tao, Li Liu-jie, Zhang Qing, Bu Cheng-zhong, Wang Zhi-qiang. Research on three widely-used empirical decline methods for shale gas wells in Weiyuan block of the Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 946-954.
[13] Gou Qi-yang, Xu Shang, Hao Fang, Shu Zhi-guo, Yang Feng, Lu Yang-bo, Zhang Ai-hua, Wang Yu-xuan, Cheng Xuan, Qing Jia-wei, Gao Meng-tian. A comprehensive evaluation index of gas-bearing property of shale reservoirs based on grey relation and its application:Case study of Jiaoshiba area,Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(7): 1045-1052.
[14] Cui Chun-lan, Dong Zhen-guo, Wu De-shan. Rock mechanics study and fracability evaluation forLongmaxi Formation of Baojing block in Hunan Province [J]. Natural Gas Geoscience, 2019, 30(5): 626-634.
[15] Wang Xiu-ping, Mou Chuan-long, Xiao Zhao-hui, Zheng Bin-song, Chen Yao, Wang Qi-yu. Sedimentary characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in southwestern Hubei Province [J]. Natural Gas Geoscience, 2019, 30(5): 635-651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jun CHEN, Jing CHEN, Na LI, Zhong-quan WANG. The exploration potential of Carboniferous natural gas in the eastern Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(7): 952 -961 .
[2] Chao-wei LIU, Xu-guang GUO, Ze-sheng WANG, Ling-li ZHU, Rong ZHANG, Hong CHEN. Study on hydrocarbon accumulation stage of Jurassic Toutunhe Formation in Fudong Slope, Junngar Basin[J]. Natural Gas Geoscience, 2020, 31(7): 962 -969 .