Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (7): 939-951.doi: 10.11764/j.issn.1672-1926.2020.04.025

Previous Articles     Next Articles

Recent research progresses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems

Yan-Ming SAI1(),Hui TIAN2,Jie LI3,Yin-Shan LIU4,Bin ZHANG5,Jun-Jie LIU3()   

  1. 1.Petroleum Engineering Technology Research Institute of the Southwest Oil and Gas Branch of SINOPEC, Deyang 618000, China
    2.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    3.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    4.Research Institute of Yanchang Petroleum (Group) Co. , Xi’an 710065, China
    5.Foreign Cooperation Department, PetroChina Changqing Oilfield Company, Xi’an 710018, China
  • Received:2019-12-15 Revised:2020-04-17 Online:2020-07-10 Published:2020-07-02
  • Contact: Jun-Jie LIU E-mail:373368297@qq.com;liu.junjie@gig.ac.cn
  • Supported by:
    Guangdong Basic and Applied Basic Research Fund (Guangdong-Guangzhou Joint Fund)(2019A1515110310);Open Fund of Carbonate Reservoir Key Laboratory of CNPC(RIPED-HZDZY-2019-JS-694)

Abstract:

Re-Os geochronometer has been used in the dating of the generation-accumulation, thermal cracking and thermochemical sulphate reduction of crude oil and the oil-source correlation of petroleum systems in recent years. Re and Os concentrations are higher in the asphaltene fraction of crude oil and the earlier precipitated fractions of asphaltene. The correlations of the Re-Os isotopic systematics between asphaltene and maltene and among the fractions of asphaltenes are complex. It is shown by experiments that Re and Os can transfer from water to oil rapidly in significant amount. However, Re-Os dating with multiple crude oil samples is suffering from great uncertainties while single oil dating methodology does not always work. A bright future for the application of Re-Os geochronometer on the dating of crude oil generation and accumulation requests further research on the homogenization mechanism of 187Os/188Os, the closed system of Re-Os systematics and how Re and Os reside in crude oil.

Key words: Petroleum system, Re-Os dating, Oil source correlation, Re-Os systematics, Oil-water contact

CLC Number: 

  • TE122.1+13

Fig.1

Simulation of the growth of source rock 187Os/188Os with time"

Fig.2

Comparison of the 187Os/188Os at 66 Ma of the Duvernay-source crude oils and the source rocks of the Western Canadian Sedimentary Basin (cited from LIU et al.[37])"

Fig.3

All Australian asphaltite samples on 187Re/188Os-187Os/188Os space[43,47]"

Table 1

The calculated initial 187Os/188Os (Osi) at 68 Ma, 74 Ma, 81 Ma and 104 Ma of the Australian asphaltite samples"

样品序号样品名Osi @ 68 MaOsi @ 74 MaOsi @ 81 MaOsi @ 104 Ma
1W13/007477 (interior)0.720.670.610.42
2W13/007507 (interior)0.650.600.540.35
3W13/007516 (interior)0.660.610.540.34
4W13/007668 (interior)0.680.630.560.37
5W13/007671 (interior)0.650.600.540.35
6W13/007672 (interior)0.670.630.580.43
7W13/007742 (interior)0.710.660.590.40
8W13/007764 (interior)0.640.590.530.35
9W13/007845 (interior)0.710.660.600.41
10W13/007976 (interior)0.640.600.540.37
11#1620.740.690.630.44
12#CL10.730.680.620.43
13#27A0.740.690.630.44
14#850.730.680.620.44
15#3060.720.670.620.44

Fig.4

Hierarchical clustering results of the Australian asphaltite samples according to 187Os/188Os at 68 Ma, 74 Ma, 81 Ma and 104 Ma using average linkage (between groups)"

Table 2

Hierarchical clustering of Australian asphaltite samples according to Osi at different timings and corresponding Re-Os dates"

Osi @ 68 MaOsi @ 74 MaOsi @ 81 MaOsi @ 104 Ma
聚类11,7,9,151,7,9,15
年龄38 ± 67(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)
聚类211,12,13,1411,12,13,1411,12,13,14,156,11,12,13,14,15
年龄94 ± 51(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)94 ± 51(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)103 ± 22(Model 1;Osi = 0.44?±?0.18;MSWD = 1.2)104 ± 12(Model 1;Osi = 0.43?±?0.10;MSWD = 0.91)
聚类32,5,8,102,3,5,8,102,3,5,8,102,3,5,8
年龄79 ± 45(Model 1;Osi = 0.56?±?0.38;MSWD = 0.08)84 ± 32 (Model 1;Osi = 0.51?±?0.28;MSWD = 0.09)84 ± 32 (Model 1;Osi = 0.97?±?0.55;MSWD =0.0007)96 ± 59 (Model 1;Osi = 0.40?±?0.51;MSWD = 0.03)

Fig.5

Re-Os isochrons of the clustered samples"

1 GE X, SHEN C, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44(6): 491-494.
2 MARK D F, PARNELL J, KELLEY S P, et al. Dating of multistage fluid flow in sandstones[J].Science,2005,309(5743): 2048-2051.
3 PARNELL J, SWAINBANK I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales[J]. Geology, 1990, 18(10):1028-1030.
4 SHEPHERD T J, DARBYSHIRE D P F. Fluid inclusion Rb-Sr isochrons for dating mineral deposits[J]. Nature, 1981, 290(5807): 578-579.
5 刘文汇,王杰,腾格尔,等.中国海相层系多元生烃及其示踪技术[J].石油学报,2012,33(Z1):115-125.
LIU W H, WANG J, TENGER, et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, 33(Z1):115-125.
6 邱华宁,吴河勇,冯子辉,等.油气成藏40Ar-39Ar 定年难题与可行性分析[J].地球化学,2009,38(4): 405-411.
QIU H N, WU H Y, FENG Z H, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4): 405-411.
7 SELBY D, CREASER R, DEWING K, et al. Evaluation of bitumen as a Re-Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 1-15.
8 SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using Rhenium-Osmium isotopes[J]. Science,2005,308(5726): 1293-1295.
9 蔡李梅,陈红汉,李兆奇,等.油气成藏过程中的同位素测年方法评述[J]. 沉积与特提斯地质, 2008, 28(4): 18-23.
CAI L M, CHEN H H, LI Z Q, et al. Isotopic dating techniques and their applications to the geochronology of hydrocarbon migration and accumulation: An overview[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(4): 18-23.
10 蔡长娥,邱楠生,徐少华.Re-Os同位素测年法在油气成藏年代学的研究进展 [J]. 地球科学进展, 2014, 29(12): 1362-1371.
CAI C E, QIU N S, XU S H. Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation[J]. Advances in Earth Science, 2014, 29(12): 1362-1371.
11 陈玲, 张微, 佘振兵. 油气成藏时间的确定方法[J]. 新疆石油地质, 2012, 33(5): 550-553.
CHEN L, ZHANG W, SHE Z B. Methods for dating of hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2012, 33(5): 550-553.
12 李真,王选策,刘可禹,等.油气藏铼—锇同位素定年的进展与挑战[J].石油学报,2017,38(3):297-306.
LI Z, WANG X C, LIU K Y, et al. Rhenium-Osmium geochronology in dating petroleum systems: Progress and challenges[J]. Acta Petrolei Sinica, 2017, 38(3): 297-306.
13 刘文汇,王杰, 陶成, 等. 中国海相层系油气成藏年代学[J].天然气地球科学,2013,24(2):199-209.
LIU W H, WANG J, TAO C, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geosciences, 2013, 24(2): 199-209.
14 沈传波,SELBY D,梅廉夫,等.油气成藏定年的Re⁃Os 同位素方法应用研究[J].矿物岩石地球化学通报,2011,31(4): 87-93.
SHEN C B, SELBY D, MEI L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J].Journal of Mineralogy and Petrology, 2011, 31(4): 87-93.
15 沈传波,葛翔,白秀娟.四川盆地震旦—寒武系油气成藏的Re⁃Os年代学约束[J].地球科学, 2019, 44(3): 713-726.
SHEN C B, GE X, BAI X J, et al. Re-Os geochronology constraints on the Neoproterozoic-Cambrian hydrocarbon accumulation in the Sichuan Basin[J]. Earth Science, 2019, 44(3): 713-726.
16 沈传波,刘泽阳,肖凡,等.石油系统Re⁃Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
SHEN C B, LIU Z Y, XIAO F, et al. Advancements of the research on Re-Os isotope system in petroleum system[J]. Advances in Earth Science, 2015, 30(2): 187-195.
17 王华建,张水昌,王晓梅.如何实现油气成藏期的精确定年[J].天然气地球科学,2013,24(2): 210-217.
WANG H J, ZHANG S C, WANG X M. How to achieve the precise dating of hydrocarbon accumulation[J]. Natural Gas Geoscience, 2013, 24(2):210-217.
18 张涛,马行陟,王伦,等.Re⁃Os同位素油气成藏定年研究进展[J].石油地质工程,2017,31(4): 30-34.
ZHANG T, MA X Z, WANG L, et al. Progress of Rhenium-Osmium isotopes in the study of dating petroleum system[J]. Petroleum Geology and Engineering, 2017, 31(4): 30-34.
19 DIMARZIO J M, GEORGIEV S V, STEIN H J, et al. Residency of Rhenium and Osmium in a heavy crude oil[J]. Geochimica et Cosmochimica Acta, 2018, 220: 180-200.
20 LIU J, SELBY D, ZHOU H, et al. Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems[J].Chemical Geology, 2019, 513:1-22.
21 MAHDAOUI F, REISBERG L, MICHELS R, et al. Effect of the progressive precipitation of petroleum asphaltenes on the Re⁃Os radioisotope system [J]. Chemical Geology, 2013, 358: 90-100.
22 HURTIG N C, GEORGIEV S V, STEIN H J, et al. Re⁃Os systematics in petroleum during water-oil interaction: The effects of oil chemistry[J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161.
23 MAHDAOUI F, MICHELS R, REISBERG L, et al. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re–Os geochronometer to petroleum [J]. Geochimica et Cosmochimica Acta, 2015, 158: 1-21.
24 REISBERG L, MICHELS R, MAHDAOUI F. Reply to the comment by Wu et al. (2016) on “Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re⁃Os geochronometer to petroleum” [Geochimica et Cosmochimica Acta 158 (2015) 1–21] [J]. Geochimica et Cosmochimica Acta, 2016, 186: 348-350.
25 WU J, LI Z, WANG X C. Comment on “Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re⁃Os geochronometer to petroleum”[Geochimica et Cosmochimica Acta 158 (2015) 1–21] [J]. Geochimica et Cosmochimica Acta, 2016, 186: 344-347.
26 GEORGIEV S V, STEIN H J, HANNAH J L, et al. Re⁃Os dating of maltenes and asphaltenes within single samples of crude oil [J]. Geochimica et Cosmochimica Acta, 2016, 179:53-75.
27 MARQUES J C. Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks [J]. Geochimica Brasiliensis, 2013, 26(1): 49-66.
28 REISBERG L, MEISEL T. The Re⁃Os isotopic system: A review of analytical techniques[J]. Geostandards Newsletter, 2002, 26(3): 249-267.
29 李超,屈文俊,王登红,等.沥青样品铼-锇同位素分析溶解实验研究[J].岩矿测试,2011,30(3): 688-694.
LI C, QU W J, WANG D H, et al. Dissolving experimental research of Re-Os isotope system for bitumen samples[J]. Rock and Mineral Analysis, 2011, 30(6): 688-694.
30 LIU J, SELBY D. A matrix-matched reference material for validating petroleum Re-Os measurements[J]. Geostandards and Geoanalytical Research, 2018, 42(1): 97-113.
31 HURTIG N C, GEORGIEV S V, ZIMMERMAN A, et al. Re-Os geochronology for the NIST RM 8505 crude oil: The importance of analytical protocol and uncertainty [J]. Chemical Geology, 2020, 539: 119381.
32 SELBY D, CREASER R A, FOWLER M G. Re⁃Os elemental and isotopic systematics in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 378-386.
33 SEN I S, PEUCKER-EHRENBRINK B. Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer [J]. Analytical Chemistry, 2014, 86(6): 2982-2988.
34 ROONEY A D, SELBY D, LEWAN M D, et al. Evaluating Re⁃Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291.
35 CUMMING V M, SELBY D, LILLIS P G, et al. Re⁃Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments [J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56.
36 LILLIS P G, SELBY D. Evaluation of the Rhenium-Osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330.
37 LIU J, SELBY D, OBERMAJER M, et al. Rhenium-Osmium geochronology and oil-source correlation of the Duvernay petroleum system, western canada sedimentary basin: Implications for the application of the Rhenium-Osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657.
38 COLODNER D, SACHS J, RAVIZZA G, et al. The geochemical cycle of Rhenium: A reconnaissance [J]. Earth and Planetary Science Letters, 1993, 117(1): 205-221.
39 HODGE V F, JOHANNESSON K H, STETZENBACH K J. Rhenium, Molybdenum, and Uranium in groundwater from the southern Great Basin, USA: Evidence for conservative behavior[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3197-3214.
40 PAUL M, REISBERG L, VIGIER N, et al. Dissolved Osmium in Bengal plain groundwater: Implications for the marine Os budget[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3432-3448.
41 ANBAR A D, CREASER R A, PAPANASTASSIOU D A, et al. Rhenium in seawater: Confirmation of generally conservative behavior[J]. Geochimica et Cosmochimica Acta, 1992, 56(11): 4099-4103.
42 SHARMA M, CHEN C, BLAZINA T. Osmium contamination of seawater samples stored in polyethylene bottles [J]. Limnology and Oceanography: Methods, 2012, 10(9): 618-630.
43 CORRICK A J, SELBY D, MCKIRDY D M, et al. Remotely constraining the temporal evolution of offshore oil systems [J]. Scientific Reports, 2019, 9(1): 1327.
44 FINLAY A J, SELBY D, OSBORNE M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes [J]. Geology, 2010, 38(11): 979-982.
45 GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen Rhenium-Osmium geochronology and apatite fission-track analysis [J]. AAPG Bulletin, 2018, 102(8): 1429-1453.
46 GE X, SHEN C, SELBY D, et al. Petroleum-generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil-generation episodes and sources [J]. AAPG Bulletin, 2018, 102(5): 913-938.
47 SCARLETT A G, HOLMAN A I, GEORGIEV S V, et al. Multi-spectroscopic and elemental characterization of southern Australian asphaltites [J]. Organic Geochemistry, 2019, 133: 77-91.
48 CORRICK A J, HALL P A, GONG S, et al. A second type of highly asphaltic crude oil seepage stranded on the south Australian coastline[J]. Marine and Petroleum Geology, 2020, 112: 104062.
49 黄少华,秦明宽,SELBY D,等.准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re⁃Os同位素定年[J]. 地学前缘, 2018, 25(2): 254-266.
HUANG S H, QIN M K, SELBY D, et al. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin[J]. Earth Science Frontiers, 2018, 25(2): 254-266.
50 黄少华,秦明宽,许强,等.准噶尔盆地西北缘深部烃类流体与表生氧化流体叠合铀成矿作用 [J]. 地质学报, 2018, 92(7): 1493-1506.
HUANG S H, QIN M K, XU Q, et al. Superimposed Uranium metallogenesis between deep hydrocarbon fluid and supergene oxidation fluid in the northwestern margin of Junggar Basin[J]. Acta Geologica Sinica, 2018, 92(7): 1493-1506.
51 WANG P, HU Y, LIU L, et al. Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong Antimony deposit, Guizhou Province, China and its geological significance[J]. Acta Geologica Sinica(English Edition),2017,91(6):2153-2163.
52 FINLAY A J, SELBY D, OSBORNE M J. Petroleum source rock identification of United Kingdom Atlantic Margin Oil Fields and the Western Canadian Oil Sands using Platinum, Palladium, Osmium and Rhenium: Implications for global petroleum systems[J]. Earth and Planetary Science Letters, 2012, 313-314: 95-104.
53 TRIPATHY G R, HANNAH J L, STEIN H J, et al. Radiometric dating of marine-influenced coal using Re⁃Os geochronology[J].Earth and Planetary Science Letters,2015,432:13-23.
54 GOSWAMI V, HANNAH J L, STEIN H J. Why terrestrial coals cannot be dated using the Re-Os geochronometer: Evidence from the Finnmark Platform, southern Barents Sea and the Fire Clay coal horizon, central Appalachian Basin [J]. International Journal of Coal Geology, 2018, 188: 121-135.
55 JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3-4): 339-353.
56 PEUCKER-EHRENBRINK B, HANNIGAN R E. Effects of black shale weathering on the mobility of Rhenium and Platinum group elements [J]. Geology, 2000, 28(5): 475-478.
57 李超,屈文俊,王登红,等.富有机质地质样品 Re⁃Os 同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430.
LI C, QU W J, WANG D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430.
58 王剑,付修根,杜安道,等.羌塘盆地胜利河海相油页岩地球化学特征及Re⁃Os定年[J].海相油气地质,2007,12(3):21-26.
WANG J, FU X G, DU A D, et al. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area, northern Tibet, China[J]. Marine Origin Petroleum Geology, 2007, 12(3): 21-26.
59 CORBETT L W, PETROSSI U. Differences in distillation and solvent separated asphalt residua [J]. Industrial & Engineering Chemistry Product Research and Development, 1978, 17(4): 342-346.
60 MITCHELL D L, SPEIGHT J G. The solubility of asphaltenes in hydrocarbon solvents [J]. Fuel, 1973, 52(2): 149-152.
61 JAMES K H. The Venezuelan hydrocarbon habitat, part 1: Tectonics, structure, palaeogeography and source rocks [J]. Journal of Petroleum Geology, 2000, 23(1): 5-53.
62 SUMMA L L, GOODMAN E D, RICHARDSON M, et al. Hydrocarbon systems of northeastern Venezuela: Plate through molecular scale-analysis of the genesis and evolution of the eastern Venezuela Basin [J]. Marine and Petroleum Geology, 2003, 20(3): 323-349.
[1] Hai-lei LIU, Hui LI, Hui XIANG, Xue-yong WANG, She-kuan DU. Geochemistry, genesis and distribution of crude oils in the Fukang fault zones and their periphery in Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 258-267.
[2] Zhou Guo-xiao, Wei Guo-qi, Hu Guo-yi. Differences of continental hydrocarbon system between Longgang and Yuanba Gasfields in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(6): 809-818.
[3] He Jia-xiong, Zhang Wei, Lu Zhen-quan, Li Xiao-tang. Petroleum system and favorable exploration directions of the main marginal basins in the northern South China Sea [J]. Natural Gas Geoscience, 2016, 27(6): 943-959.
[4] GONG Xiao-feng,HE Jia-xiong,MO Tao,CHEN Sheng-hong,ZHANG Jing-ru,ZHANG Wei,LI Xiao-tang. The Petroleum System and Hydrocarbon Migration and Accumulation Mode of Huilu Oil Region in Zhu 1 Depression of Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2015, 26(12): 2292-2303.
[5] GUO Yu-feng, DU Xiu-qin, FU Ning. Contribution of Marine Source Rock to Hydrocarbon Accumulation,Zhu ⅡSag [J]. Natural Gas Geoscience, 2014, 25(12): 1975-1982.
[6] WANG Fei-Yu, HE Zhi-Yong, MENG Xiao-Hui, BAO Lin-Yan, ZHANG Hui. Occurrence of Shale Gas and Prediction of Original Gas In-place(OGIP) [J]. Natural Gas Geoscience, 2011, 22(3): 501-510.
[7] HE Guo-Yuan, TAN Pan-Hu, GUAN Beng, LI Yuan-Kui, ZHANG Wen-Chao, DU Ban-Ban. Characteristics and Evaluation of Marine Source Rock in Southwestern Shunan [J]. Natural Gas Geoscience, 2008, 19(4): 509-518.
[8] YUAN Sheng-qiang, ;WU Shi-guo,;MA Yu-bo,;FU Yan-hui . Tectono-sedimentary Evolution and Petroleum Systemsof the Deepwater Basin along South Atlantic Ocean Margin [J]. Natural Gas Geoscience, 2008, 19(2): 216-221.
[9] CHENG Yong-sheng ;CHEN Song-ling ;WANG Hai;CANG Feng ;LIU Juan . LOWER TERTIARY PETROLEUM SYSTEM INLETING SAG, BOHAI BAY BASIN [J]. Natural Gas Geoscience, 2007, 18(6): 854-858.
[10] YAO Ya-ming,ZHOU Ji-jun,HE Ming-xi,FU Dai-guo,CHEN Jian-jun.
IDEAS ON THE PETROLEUM GEOLOGY CONDITIONS OF YANJI BASIN
[J]. Natural Gas Geoscience, 2006, 17(4): 463-467.
[11] ZHAO Meng-jun,SONG Yan,LIU Shao-bo,QIN Sheng-fei,HONG Feng,FU Guo-you, DA Jiang. DIVISION OF HYDROCARBON ACCUMULATION SYSTEM IN THE SOUTHERN JUNGGAR FORELAND BASIN [J]. Natural Gas Geoscience, 2006, 17(4): 452-455.
[12] . DOWN CRETACEOUS OIL SOURCES COMPARATIVE STUDY OF YING'ERDEPRESSI ON IN JIUDONG BASIN [J]. Natural Gas Geoscience, 2006, 17(2): 192-195.
[13] .
RECOMMENDATIONS ON STRATEGIC SELECTION OF EXPLORATION AREAS IN AFRICA
[J]. Natural Gas Geoscience, 2005, 16(3): 397-402.
[14] . NEW KNOWLEDGE ON MARINE CARBONATE PETROLEUM  SYST EM STUDY IN CHINA [J]. Natural Gas Geoscience, 2005, 16(2): 175-177.
[15] . THE DISTRIBUTION AND CONTROL FACTORS OF PHASE STATE OF OIL AND GAS POOLS IN KUQA PETROLEUM SYSTEM [J]. Natural Gas Geoscience, 2004, 15(3): 205-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!