Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (7): 1028-1040.doi: 10.11764/j.issn.1672-1926.2020.03.013

Previous Articles     Next Articles

Fractal analysis of micropore structures in coal and shale based on low-temperature CO2 adsorption

Yi-hua XIONG1(),Shang-wen ZHOU2,Peng-fei JIAO2,Ming-wei YANG2,Jun-ping ZHOU3,Wei WEI1,Jian-chao CAI1()   

  1. 1.Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
    2.PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    3.The State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
  • Received:2019-12-28 Revised:2020-03-29 Online:2020-07-10 Published:2020-07-02
  • Contact: Jian-chao CAI E-mail:lingkongdaxia@163.com;caijc@cug.edu.cn
  • Supported by:
    The China National Science and Technology Major Projects(2017ZX05035002-002);The Natural Science Foundation of China(41722403)

Abstract:

An effective method to accurately characterize and quantify the pore structure of coal and shale is a key issue. At present, the fractal dimension of surface roughness (D2) of coal and shale is mainly analyzed based on the low-temperature nitrogen adsorption experiments and Frenkel-Halsey-Hill (FHH) model, but the micropore fractal dimension (Dm) is still rarely studied. This paper based on the micropore-filling theory and micropore-aperture distribution theory, a Dm model of coal and shale was proposed. The low-temperature CO2 adsorption experiments were done, and the fractal analysis of CO2 adsorption isotherms corresponding to coal and shale samples were carried out by using the Dm method. The results show that the Dm of coal is ranging from 2.6 to 2.8, with an average of 2.75, while that of shale ranges from 2.8 to 2.9, with an average of 2.88. The specific surface area of micropore of shale is ranging from 15 m2/g to 30 m2/g, while the specific surface area of micropore of coal is ranging from 100 m2/g to 300 m2/g. It shows that the pore distribution of shale is scattered and the number of pore is small, indicating that shale has a more complicated and heterogeneous micropore structure. The Dm and D2 are compared. The pore volume and specific surface area of micropore of coal are much larger than that of macropores, and the micropore structure is more complex. Meanwhile, the small number of mesopores and macropores, small specific surface area and smooth pore surface, make Dm of coal larger than D2. Dm and D2 are respectively affected by the complexity of microporous structure and the roughness of mesopore and macropore surface. Complex micropore structure and rough pore surface will increase the fractal dimension.

Key words: Micropore fractal dimension, FHH model, Low-temperature CO2 adsorption, Low-temperature N2 adsorption

CLC Number: 

  • TE151

Table 1

Petrophysical information of the selected shale samples"

样品 编号层位黏土矿物 含量/%脆性矿物 含量/%

TOC

/%

核磁孔隙度

/%

Y-1龙马溪组22.561.40.88.58
Y-2龙马溪组27.949.30.78.00
Y-3龙马溪组17.746.93.23.71
Y-4龙马溪组24.744.61.97.28
Y-5龙马溪组20.343.71.710.27
Y-6龙马溪组14.447.41.76.45
Y-7五峰组3.327.22.05.98
Y-8五峰组16.520.74.62.71
Y-9五峰组38.042.94.88.07

Table 2

Petrophysical information of the selected coal samples"

样品编号层位总有机质含量/%镜质组含量/%RO/%氦测孔隙度/%渗透率/(10-3 μm2
M-1山西组81.671.91.41.70.002 7
M-2山西组76.782.31.45.60.329 3
M-3太原组83.486.01.51.30.105 0
M-4本溪组84.291.41.51.30.005 3
M-5本溪组76.683.71.72.40.001 1
M-6本溪组77.979.21.71.20.155 1
M-7本溪组80.587.21.81.4-

Fig. 1

CO2 adsorption and desorption isotherms of coal (a) and shale (b) samples"

Fig.2

Pore size distribution (PSD) of coal (a,b) and shale (c,d) samples obtained from CO2 adsorption isotherms"

Fig.3

Comparisons of the micropore volume of the coal and shale samples"

Table 3

The value of ρ and v of the coal and shale samples"

样品编号ρ/(kJ·mol)v样品编号ρ/(kJ·mol)v
M-113.002.05Y-114.632.03
M-213.162.05Y-214.811.98
M-313.332.08Y-315.052.02
M-413.222.09Y-415.132.08
M-512.921.99Y-515.022.00
M-610.362.08Y-614.982.05
M-79.552.10Y-715.042.03
Y-815.872.09
Y-915.031.98

Fig.4

Plots of Ln(x) vs Ln(J(x)) reconstructed from CO2 adsorption isotherms of coal (a) and shale (b) samples"

Table 4

Fitting formula and correlation coefficient of micropore fractal dimension(MFD) model of coal and shale samples"

样品编号拟合公式R2样品编号拟合公式R2
M-1y=-0.781 3x-1.172 40.988 3Y-1y=-0.850 6x-1.060 60.995 6
M-2y=-0.789 3x-1.160 40.988 7Y-2y=-0.882 4x-1.070 70.995 9
M-3y=-0.784 8x-1.141 70.988 8Y-3y=-0.881 6x-1.050 60.996 1
M-4y=-0.775 9x-1.148 60.988 5Y-4y=-0.858 5x-1.026 60.996 1
M-5y=-0.804 9x-1.191 70.988 6Y-5y=-0.888 4x-1.058 60.996 1
M-6y=-0.663 7x-1.466 80.981 3Y-6y=-0.860 5x-1.039 50.995 9
M-7y=-0.629 2x-1.598 50.978 8Y-7y=-0.874 8x-1.046 30.996 1
Y-8y=-0.908 6x-1.010 30.996 9
Y-9y=-0.897 2x-1.065 00.996 1

Table 5

Micropore fractal dimensions of coal and shale samples by the MFD model"

样品编号V0 /(cm3/g )比表面积/(m2/g)Dm样品编号V0 /(cm3/g )比表面积/(m2/g)Dm
M-121.95100.232.78Y-14.7821.852.85
M-223.77108.552.79Y-24.1218.802.88
M-337.82172.672.78Y-32.7012.322.88
M-436.93168.642.78Y-43.5015.972.86
M-532.20147.022.80Y-53.3715.392.89
M-660.14274.592.66Y-63.6016.432.86
M-764.48294.442.63Y-73.2614.862.87
Y-81.707.782.91
Y-94.3619.932.90

Fig.5

N2 adsorption and desorption isotherms of coal (a) and shale (b) samples(solid point: adsorption point; empty point: desorption point)"

Fig.6

BJH pore volume of coal and shale samples based on low-temperature N2 adsorption experiments"

Fig.7

Plots of Ln(Ln(p0/p)) vs LnV reconstructed from N2 adsorption isotherms of coal (a) and shale (b) samples"

Table 6

Fitting formula and correlation coefficient of FHH model of coal and shale samples"

样品编号D1D2
拟合公式R2拟合公式R2
M-1y=-0.480 1x-1.341 40.967 7y=-0.449 3x-1.458 60.997 6
M-2y=-0.459 5x-1.793 40.941 5y=-0.321 5x-1.793 20.994 3
M-3y=-0.165 4x-2.500 80.606 3y=-0.504 1x-2.832 50.997 3
M-4y=-0.095 0x-2.446 60.213 9y=-0.511 6x-2.936 60.993 8
M-5y=-0.350 7x-1.493 30.925 5y=-0.505 8x-1.703 40.995 3
M-6y=0.061 7x-2.321 50.146 9y=-0.675 8x-2.988 90.986 0
M-7y=-0.454 7x-1.615 50.947 0y=-0.455 3x-1.785 10.989 4
Y-1y=-0.332 3x+1.942 00.991 1y=-0.265 2x+1.934 60.998 9
Y-2y=-0.346 2x+1.850 30.994 4y=-0.282 5x+1.847 50.998 8
Y-3y=-0.326 0x+2.258 10.993 5y=-0.285 8x+2.255 00.998 5
Y-4y=-0.330 7x+1.993 10.991 8y=-0.251 9x+1.997 90.997 6
Y-5y=-0.334 4x+2.019 00.991 7y=-0.254 5x+2.031 70.996 7
Y-6y=-0.310 4x+1.830 10.982 6y=-0.212 0x+1.867 60.980 7
Y-7y=-0.303 1x+2.485 90.982 7y=-0.194 9x+2.518 80.989 3
Y-8y=-0.328 3x+2.358 30.993 0y=-0.215 1x+2.374 60.999 6
Y-9y=-0.304 7x+1.969 50.983 8y=-0.209 8x+1.999 00.989 8

Table 7

Fractal dimensions of coal and shale derived from the FHH model"

样品编号V0/(m3/g)比表面积/(m2/g)D1D2
M-10.180.792.522.55
M-20.120.512.542.68
M-30.060.262.832.50
M-40.070.282.902.49
M-50.160.702.652.49
M-60.070.323.062.32
M-70.140.612.552.54
Y-14.6820.392.712.74
Y-24.2618.522.692.72
Y-36.4327.992.712.75
Y-44.9321.462.712.76
Y-55.0522.002.702.76
Y-64.2118.322.732.82
Y-78.1235.362.742.83
Y-87.1230.982.722.79
Y-94.8421.082.732.81

Fig.8

Plots of pore volume and specific surface area of coal (a) and shale (b)"

Fig.9

Plots of fractal dimension and specific surface area of coal [(a),(c)] and shale [(b),(d)]"

Fig.10

Plots of fractal dimension and pore volume of coal [(a),(c)] and shale [(b),(d)]"

Fig.11

Comparisons of micropore fractal dimension of coal and shale samples"

Fig.12

Comparisons of FHH fractal dimension (D2) of coal and shale samples"

1 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects[J]. Petroleum Exploration and Development,2015, 42(6): 689-701.
2 邹才能,陈艳鹏,孔令峰,等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发,2019,46(2):195-204.
ZOU C N, CHEN Y P, KONG L F, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China[J]. Petroleum Exploration and Development, 2019, 46(2): 195-204.
3 王运海. 四川盆地平桥地区五峰—龙马溪组页岩微观孔隙特征研究[J]. 石油实验地质, 2018,40(3):337-344.
WANG Y H. Micro-pore characteristics of shale from Wufeng-Longmaxi Formations in Pingqiao area, Sichuan Basin[J]. Petroleum Geology and Experiment, 2018, 40(3): 337-344.
4 阎纪伟,要惠芳,李伟,等. 微米CT技术研究煤的孔隙结构和分形特征[J]. 中国矿业, 2015,24(6):151-156.
YAN J W, YAO H F, LI W, et al. Pore structure and fractal characteristics of coals by μCT technology[J] China Mining Magazine ,2015, 24(6): 151-156.
5 熊健,刘向君,梁利喜. 四川盆地长宁构造地区龙马溪组页岩孔隙结构及其分形特征[J]. 地质科技情报,2015,34(4):70-77.
XIONG J, LIU X J, LIANG L X, et al. Pore structure and fractal characteristics of Longmaxi Formation shale in the Changning region of Sichuan Basin[J] Geological Science and Technology Information,2015, 34(4): 70-77.
6 周尚文,刘洪林,闫刚,等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4): 612-616.
ZHOU S W, LIU H L, YAN G, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J] Oil and Gas Geology ,2016, 37(4):612-616.
7 闫建平,何旭,耿斌,等. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 测井技术, 2017,14(2):205-215.
YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum: Multifractal characteristics and pore structure evaluation[J]. Well Logging Technology, 2017, 14(2): 205-215.
8 贺闪闪,赵迪斐,刘静,等. 基于低温氮气吸附的无烟煤吸附孔隙结构与分形特征表征[J]. 煤炭技术, 2019,38(1):66-69.
HE S S, ZHAO D F, LIU J, et al. Characterization of adsorption pore structure and fractal characteristics in anthracite coal based on low temperature nitrogen adsorption[J]. Coal Technology ,2019, 38(1): 66-69.
9 毋耀凯. 基于低温液氮吸附软硬煤孔隙结构分形特征研究[J]. 煤, 2019,28(2):36-37.
WU Y K. Study on fractal characteristics of pore structure of soft and hard coal adsorbed by low temperature liquid nitrogen[J]. Coal ,2019, 28(2): 36-37.
10 宋昱,姜波,李凤丽,等. 低—中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学,2018,43(5):1611-1622.
SONG Y, JIANG B, LI F L, et al. Applicability of fractal models and nanopores’ fractal characterizatics for low-middle rank tectomic deformed coals[J]. Earth Science,2018, 43(5): 1611-1622.
11 黄家国,许开明,郭少斌,等. 基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J]. 现代地质,2015,29(1):198-205.
HUANG J G, XU K M, GUO S B, et al. Comprehensive study on pore structures of shale reservoirs based on SEM, NMR and X-CT[J]. Geoscience ,2015, 29(1): 198-205.
12 曹廷宽,刘成川,曾焱,等. 基于CT扫描的低渗砂岩分形特征及孔渗参数预测[J]. 断块油气田,2017,24(5):657-661.
CAO T K, LIU C C, ZENG Y, et al. Fractal characteristic of low-permeability sandstone and physical parameters prediction based on CT scanning[J].Fault-Block Oil Gas Field, 2017, 24(5): 657-661.
13 龚小平,唐洪明,赵峰,等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏,2016,28(3):48-57.
GONG X P, TANG H M, ZHAO F, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J] Lithologic Reservoirs, 2016, 28(3): 48-57.
14 徐欣,徐书奇,邢悦明,等. 煤岩孔隙结构分形特征表征方法研究[J]. 煤矿安全,2018,49(3):148-150.
XU X, XU S Q, XING Y M, et al. Study on characterization method of fractal features of pore structure for coal rock[J]. Safety in Coal Mines,2018, 49(3): 148-150.
15 余恩晓,马立涛,周福双,等. 煤岩孔隙结构分形特征表征方法研究[J]. 煤炭科学技术, 2018,46(11):8-12.
YU E X, MA L T, ZHOU F S, et al. Study on method to characterize fractal features of pore structures in coal and rock mass[J]. Coal Science and Technology,2018, 46(11): 8-12.
16 张宝鑫,王瑞瑞,傅雪海. 霍西煤田太原组煤系灰岩孔隙分形特征对比研究[J]. 煤炭科学技术,2018,46(12):203-208.
ZHANG B X, WANG R R, FU X M, et al. Comparison study on pore fractal features of coal measures limestone in Taiyuan Formation of Huoxi Coalfield[J]. Coal Science and Technology, 2018, 46(12): 203-208.
17 LI Z L, DUAN Y G, FANG Q T, et al. A study of relative permeability for transient two-phase flow in a low permeability fractal porous medium[J] Advances in Geo-Energy Research, 2018, 2(4): 369-379.
18 JIN T X, CAI X, CHEN Y, et al. A fractal-based model for soil water characteristic curve over entire range of water content[J]. Capillarity, 2019, 2(4): 66-75.
19 蔡建超,胡祥云. 多孔介质分形理论与应用[M]. 北京:科学出版社, 2015.
CAI J C, HU X Y. Fractal Theory in Porous Media and Its Applications[M].Beijing: Science Press, 2015.
20 XIA Y X, CAI J C, PERFECT E, et al. Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction[J]. Journal of Hydrology, 2019, 579: 124198.
21 孙波,王魁军,张兴华. 煤的分形孔隙结构特征的研究[J]. 煤矿安全,1999,30(1):38-40.
SUN B, WANG K J, ZHANG X H, et al. Study on fractal pore structure characteristics of coal[J]. Safety in Coal Mines, 1999, 30(1): 38-40.
22 贺伟钟,孚勋,贺承祖,等. 储层岩石孔隙的分形结构研究和应用[J]. 天然气工业,2000,20(2):67-70.
HE W Z, FU X, HE C Z, et al. Study and application of fractal structure of reservoir rock pores[J]. Natural Gas Industry,2000, 20(2): 67-70.
23 杨宇,孙晗森,彭小东,等. 煤层气储层孔隙结构分形特征定量研究[J]. 特种油气藏2013,20(1):31-33.
YANG Y, SUN H S, PENG X D, et al. Quantitative study on fractal characteristics of pore structure in coalbed methane reservoir[J]. Special Oil and Gas Reservoirs, 2013, 20(1): 31-33.
24 YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42.
25 解德录,郭英海,赵迪斐. 基于低温氮实验的页岩吸附孔分形特征[J]. 煤炭学报, 2014,39(12):2466-2472.
XIE D L, GUO Y H, ZHAO D F. Fractal characteristics of adsorption pore of shale based on low temperature nitrogen experiment[J]. Journal of China Coal Society,2014, 39(12): 2466-2472.
26 杨峰,宁正福,王庆,等. 页岩纳米孔隙分形特征[J]. 天然气地球科学, 2014,25(4):618-623.
YANG F, NING Z F, WANG Q, et al. Fractal characteristics of nanopore in shales[J]. Natural Gas Geosicence,2014, 25(4): 618-623.
27 戴方尧,胡海燕,张爱华. 有机质页岩孔隙分形模型的适用性研究[J]. 煤炭科学技术, 2019,47(2):168-175.
DAI F Y, HU H Y, ZHANG A H. Suitability study on fractal model of organic shale pore[J]. Coal Science and Technology,2019, 47(2): 168-175.
28 DUBININ M M, STOECKLI F. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents[J]. Journal of Colloid and Interface Science, 1980, 75(1): 34-42.
29 JARONIEC M, GILPIN R K, CHOMA J. Correlation between microporosity and fractal dimension of active carbons[J]. Carbon, 1993, 31(2): 325-331.
30 JARONIEC M, LU X, MADEY R, et al. Evaluation of structural heterogeneities and surface irregularities of microporous solids[J]. Materials Chemistry and Physics,1990,26(1): 87-97.
31 CHOMA J, JARONIEC M, PIOTROWSKA J. On the mesopore correction of adsorption data used for characterizing microporous structure of activated carbons[J]. Materials Chemistry and Physics, 1987, 18(4): 409-421.
32 STOECKLI F, BALLERINI L, SBERNARDINI D. On the evolution of micropore widths and areas in the course of activation[J]. Carbon, 1989, 27(3): 501-502.
33 赵迪斐,郭英海,解徳录,等. 基于低温氮吸附实验的页岩储层孔隙分形特征[J]. 东北石油大学学报, 2014,38(6):100-108.
ZHAO D F, GUO Y H, XIE D L, et al. Fractal characteristics of shale reservoir pores based on nitrogen adsorpion[J]. Jour-nal of Northeast Petroleum University,2014,38(6):100-108.
34 徐勇,吕成福,陈国俊,等. 川东南龙马溪组页岩孔隙分形特征[J]. 岩性油气藏,2015,27(4):32-39.
XU Y, LV C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin[J]. Lithologic Reservoirs,2015, 27(4): 32-39.
35 HAZRA B,WOOD D A,VIKRAM V,et al. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques[J].Fuel,2018,220:837-848.
36 李子文,林柏泉,郝志勇,等. 煤体多孔介质孔隙度的分形特征研究[J]. 采矿与安全工程学报,2013,30(3):437-442.
LI Z W, LIN B Q, HAO Z Y, et al. Fractal characteristics of porosity for porous media in coal mass[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 437-442.
37 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013,34(2):301-311.
YANG F, NING Z F, HU C P, et al. Characterization of microscopic pore structures in shale reservoir[J]. Acta Petrolei Sinica2013, 34(2): 301-311.
[1] Nu-tao WANG, Ling-yun DU, Hai-bo HE, Huo-yang LIN, Ming-qian ZHU. New method for analysis of oil and gas well production decline [J]. Natural Gas Geoscience, 2020, 31(3): 335-339.
[2] Zhou Shang-wen, Wang Hong-yan, Liu Hao, Guo Wei, Chen Hao. A new calculation method for lost gas content of shale based on Arps production decline analysis model [J]. Natural Gas Geoscience, 2019, 30(1): 102-110.
[3] ZOU Tuo,WU Shu-yan,CHEN Xiao-zhi,ZHANG Jin. Super-fine Modeling of the Inner Point Bar of Meandering River:A Case study on the Fault One of Area I in Eastern Dagang Oilfield [J]. Natural Gas Geoscience, 2012, 23(6): 1163-1169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!