Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (2): 151-162.doi: 10.11764/j.issn.1672-1926.2019.12.009

    Next Articles

Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze region

Yu-man WANG1(),Xin-jing LI1,Hao WANG2,Wei WU3,Shan JIANG1,Bo CHEN2,Jun-jun SHEN2,Guo-xiao ZHOU1   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    2.Yangtze University, Wuhan 430100, China
    3.Shale Gas Research Institute, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610051, China
  • Received:2019-11-24 Revised:2019-12-27 Online:2020-02-10 Published:2019-12-11
  • Supported by:
    the National Science and Technology Major Project(2017ZX05035001);Chinese Academy of Sciences Strategic Leading Science and Technology Project (Class A)(XDA14010101);PetroChina Exploration & Production Shale Gas Play Evaluation and Strategic Selection Project(kt2018-01-06)

Abstract:

It is a significant task for selecting and evaluating of marine shale gas areas in South China to determine the distribution range of organic matter carbonization belts and exclude the high risk zones of shale gas exploration. Based on a large number of drilling and outcrop data, this study has carried out the identification and prediction of the organic matter carbonation areas for Longmaxi Formation of Lower Silurian in the middle and upper Yangtze regions, and compiled the industrial maps of the distribution of the organic matter carbonation areas in Longmaxi Formation, as well as preliminarily obtained four achievements and understandings. Firstly, the criteria for identification of organic matter carbonation in high-over mature marine shales were put forward, in which the response characteristic of thin neck type from the logging resistivity is exclusively correlated with the carbonization of organic matter in shales. Therefore, it is a perfect standard for judging organic matter carbonization of high-over mature marine shales, reliable to apply this method and criterion. Secondly, the distribution of organic matter carbonation for Longmaxi Formation in the middle and upper Yangtze region has certain regularity, indicating that carbonation points are mainly distributed in four exploration areas, i.e. East Sichuan-West Hubei, Northwest Hubei, the west of South Sichuan and the east of Changning structure, covering an area of more than 35 000 km2.Thirdly, the organic matter carbonation of Longmaxi Formation shows a trend of continuous distribution in Eastern Sichuan-Western Hubei and west of southern Sichuan, with characteristics of a widespread area as well as weak-severe carbonation. Finally, regions of organic matter carbonation are relatively small, showing the characteristics of serious and weak carbonation in northwestern Hubei and the eastern Changning structure, respectively. Consequently, these four carbonation areas are restricted zones for the shale gas exploration of Longmaxi Formation, and high-risk belts for the shale gas resource evaluation and strategically selected areas.

Key words: Yangtze region, Lower Silurian, Longmaxi Formation, Carbonization of organic matter, Resistivity responses, Laser Raman, High-risk areas

CLC Number: 

  • TE122.1

Fig. 1

Rt-TOC Correlation of Longmaxi Formation (in Wells W202,X202,LY1 and YYY1) and Marcellus shale"

Fig. 2

Correlation between BET surface to volume ratio and N2 adsorptive capacity of Qingzhusi Formation (graphitized) and Longmaxi Formation (not graphitized) in Changning region"

Table 1

Essential characteristic and criterion about organic matter graphitization of marine shale (formulated according to Refs. [3-7,11-14] and Figs.1 & 2)"

序号页岩地质属性基本特征和判识标准应用结果评价
测井电阻率响应

富有机质页岩段Rt曲线呈 “细脖子型”特征:

Rt值<8 Ω·m,且至少低于贫有机质页岩段2个数量级,并与TOC负相关;在严重碳化阶段普遍<2 Ω·m,在弱碳化阶段一般介于2~8 Ω·m

富有机质页岩超低电阻特征与有机质石墨化具有唯一相关性,方法和标准可靠
激光拉曼谱拉曼谱异常:在G′峰位置出现石墨峰,D峰与G峰峰高比普遍大于0.63是计算高过成熟海相页岩Ro值的有效方法;受样品风化程度和观察点选择影响较大,对弱石墨化样品检测存在误差。方法和标准的可靠性居中
3物性和含气性物性和含气性差:基质孔隙度仅为正常水平1/2以下,或基质比表面积、吸附能力仅为正常水平1/2以下;不含气或微气显示适用于有机质碳化与岩石致密化在时限上同步的页岩地层(如中国南方志留系),对中国南方寒武系适用性较差

Fig.3

Distribution prediction of graphitized organic matter areas in Rhuddanian,Central-Upper Yangtze region"

Fig.5

Resistivity responses of Longmaxi shale in Wells RY1,Y1,N203,B1,YYY1,Y201 and GS1"

Fig.4

Stratigraphic histogram of Wufeng-Longmaxi formations in the Sutian section (Yongshan)"

Fig.6

OM laser Raman spectra of the Longmaxi Formation in the Sutian section (Yongshan)"

Fig.7

Backscattered electron image of the Longmaxi Formation in the Sutian section (Yongshan)(the area ratio of OM pores is 5.8%)"

Fig.8

OM laser Raman spectras of the Longmaxi Formation in major prospects"

Table 2

Geologic parameters of graphitized Longmaxi Formation in major prospects in the Sichuan Basin and surrounding regions"

井号/剖面区块埋深/mTOC/%拉曼RO/%孔隙度/%自然伽马/API电阻率/(Ω·m)含气量/(m3/t)有机质碳化程度保存条件参考文献
LY1鄂西2 790~2 8301.1~6.03.56~3.73(1.90~4.77)/2.76150~2700.1~0.90.13~0.48严重碳化盆外向斜区,保存条件较好[3,7]
HY1鄂西2 142~2 1661.5~5.33.80~4.00150~270(0.01~0.30)/0.2微气严重碳化盆外向斜区,保存条件较好[3,7,18]
X202川东北1 965~1 9890.5~6.43.48~3.51(2.40~8.78)/3.85145~3003~71.38~3.00,试产为微气弱碳化盆外褶皱带,龙马溪组具自封盖性,保存条件中等[3]
TY1川东>3 9002.0~5.03.50~3.55150~3502~6/4微气,压力系数小于1弱碳化盆地内,保存条件好[3,19]
JS1川东4 925~4 97573~223(3.2~10)/7.3弱碳化盆地内,保存条件好
B1川南<1 5003.5~3.60.8~8弱碳化盆外向斜区,保存条件较好
YYY1川南2 900~3 0701.9~9.03.6~3.9120~2500.12-0.3<0.2严重碳化盆内向斜区,保存条件较好
Y201川南3 500~3 6603.60~3.801.2160~3000.6-2严重碳化位于盆地内,保存条件好
RY1川南4 030~4 0551.9~6.53.50~3.60(0.50~2.30)/0.74180~2501.8~8.00.51弱碳化盆地内,保存条件好[3,18,19,20]
永善苏田川南露头1.5~6.33.59~3.67150~225严重碳化位于盆地外,保存条件差
城口明中川东北露头(0.26~2.63)/0.80180~521严重碳化位于盆地外,保存条件差
巫溪白鹿川东北露头(0.66~1.58)/1.05180~310弱碳化位于盆地外,保存条件差
彭水鹿角川东露头1.4~4.73.50~3.55180~580弱碳化位于盆地外,保存条件差
咸丰龙坪鄂西露头2.0~4.83.56190~300弱碳化位于盆地外,保存条件差
石柱漆辽川东露头1.9~11.23.50~3.54150~480弱碳化位于盆地内,保存条件差
南漳李庙鄂西北露头3.4~8.53.80~3.90180~350严重碳化位于盆地外,保存条件差
1 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2015, 43(4):499-510.
ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development,2016,43(4):499-510.
2 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016,43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development, 2016,43(2): 166-178.
3 王玉满, 李新景, 陈波, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J].石油勘探与开发, 2018, 45(3):385-395.
WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395.
4 王玉满, 董大忠, 程相志, 等. 海相页岩有机质碳化的电性证据及其地质意义: 以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业, 2014, 34(8): 1-7.
WANG Y M, DONG D Z, CHENG X Z, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7.
5 蒋珊, 王玉满, 王书彦, 等. 四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J]. 天然气工业, 2018, 38(10): 19-27.
JIANG S, WANG Y M, WANG S Y, et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the Central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 19-27.
6 王道富,王玉满,董大忠,等. 川南下寒武统筇竹寺组页岩储集空间定量表征[J].天然气工业,2013,33(7): 1-10.
WANG D F,WANG Y M, DONG D Z, et al.Quantitative characterization of reservoir space in the Lower Cambrian Qiongzhusi shale, southern Sichuan Basin[J].Natural Gas Industry, 2013,33(7): 1-10.
7 王宏坤, 吕修祥, 王玉满, 等. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学,2018,29(3):415-423.
WANG H K, LÜ X X,WANG Y M,et al. The reservoir characteristics of Lower Silurian Longmaxi Formation in western Hubei[J]. Natural Gas Geoscience, 2018,29(3):415-423.
8 王淑芳, 张子亚, 董大忠,等. 四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J]. 天然气地球科学, 2016, 27(9): 1619-1628.
WANG S F, ZHANG Z Y, DONG D Z, et al. Microscopic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale, Sichuan Basin, China[J]. Natural Gas Geoscience, 2016,27(9): 1619-1628.
9 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度方法与地质应用[J]. 科学通报, 2013, 58(13):1228-1241.
LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.
10 CHRISTOPH S, DAVID W H, ROBERT C J. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study[J]. Organic Geochemistry, 1998, 28(9/10):535-542.
11 肖贤明,王茂林,魏强,等. 中国南方下古生界页岩气远景区评[J]. 天然气地球科学,2015,26(8):1433-1445.
XIAO X M, WANG M L, WEI Q, et al. Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
12 杨小兵, 张树东, 张志刚, 等. 低阻页岩气储层的测井解释评价[J].成都理工大学学报:自然科学版,2015,42(6):692-699.
YANG X B, ZHANG S D, ZHANG Z G, et al. Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2015, 42(6): 692-699.
13 PIANE C D, BOURDET J, JOSH M, et al. Organic matter network in postmature Marcellus shale: Effects on petrophysical properties[J]. AAPG Bulletin, 2018, 102(11): 2305-2332.
14 张晋言, 李淑荣, 王利滨, 等. 低阻页岩气层含气饱和度计算新方法[J].天然气工业,2017,37(4): 26-33.
ZHANG J Y, LI S R, WANG L B, et al.A new method for calculating gas saturation of low-resistivity shale gas reservoirs [J]. Natural Gas Industry, 2017,37(4):26-33.
15 王民, LI Zhongsheng. 激光拉曼技术评价沉积有机质热成熟度[J]. 石油学报, 2016, 37(9): 1129-1136.
WANG M, LI Z S. Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy[J]. Acta Petrolei Sinica, 2016, 37(9): 1129-1136.
16 BUSECK P R, BEYSSAC O. From organic matter to graphite: Graphitization[J]. Elements, 2014, 10(6): 421-426.
17 CARDOTT B J, LANDIS C R, CURTIS M E. Post-oil solid bitumen network in the Woodford shale, USA-A potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139:106-113.
18 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326.
GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326.
19 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153.
WEI X F, LI Y P, WEI Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153.
20 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491.
GUO X S, HU D F, LI Y P, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491.
[1] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[2] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[3] Ping YU, Yu ZHANG, Jian-ping YAN, De-yong SHAO, Liu-liu ZHANG, Huan LUO, Bo QIAO, Tong-wei ZHANG. The characteristics of water uptake and the comparative studies on three methods of determining porosity in organic-rich shale of Longmaxi Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(7): 1016-1027.
[4] Zhen QIU, Cai-neng ZOU, Hong-yan WANG, Da-zhong DONG, Bin LU, Zhen-hong CHEN, De-xun LIU, Gui-zhong LI, Han-lin LIU, Jiang-lin HE, Lin WEI. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China [J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[5] Meng⁃qi Zhang, Cai⁃neng Zou, Ping Guan, Da⁃zhong Dong, Sha⁃sha Sun, Zhen⁃sheng Shi, Zhi⁃xin Li, Zi⁃qi Feng, Lilamaocaidan. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area [J]. Natural Gas Geoscience, 2019, 30(9): 1349-1361.
[6] Shen Cheng, Zhao Jin-Zhou, Ren Lan, Fan Yu. A new method to identify fracturing sweet spot in Longmaxi Formation of Sichuan Basin,SW China [J]. Natural Gas Geoscience, 2019, 30(7): 937-945.
[7] Guo Qi-heng, Jin Zhen-kui, Geng Yi-kai, Zhao Jian-hua, Chang Rui, Cui Xue-min, Wang Jin-yi. The characteristics of carbonate minerals in the Longmaxi Formationgas shale and its impact on the reservoir performance in the Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(5): 616-625.
[8] Wang Xiu-ping, Mou Chuan-long, Xiao Zhao-hui, Zheng Bin-song, Chen Yao, Wang Qi-yu. Sedimentary characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in southwestern Hubei Province [J]. Natural Gas Geoscience, 2019, 30(5): 635-651.
[9] Deng Yu, Zeng Qing-cai, Chen Sheng, Guan Quan-zhong, Guo Xiao-long, He Pei. Seismic quantitative prediction method and application of TOC content in Wufeng-Longmaxi Formations shale reservoirs in Weiyuan area,Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(3): 414-422.
[10] He Long, Wang Yun-peng, Chen Duo-fu, Wang Qin-xian, Wang Cheng. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area,Chongqing [J]. Natural Gas Geoscience, 2019, 30(2): 203-218.
[11] Cheng-lin Zhang,Jian Zhang,Wu-guang Li,Chong Tian,Chao Luo,Sheng-xian Zhao,Wen-wen Zhong. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi Formations in Dazu area, western Chongqing [J]. Natural Gas Geoscience, 2019, 30(12): 1794-1804.
[12] Xing Liang,Ke-luo Chen,Ting-shan Zhang,Zhao Zhang,Jie-hui Zhang,Hong-lin Shu. The controlling factors of depositional environment to pores of the shales:Case study of Wufeng Formation-Lower Longmaxi Formation in Dianqianbei area [J]. Natural Gas Geoscience, 2019, 30(10): 1393-1405.
[13] Guo Xu-sheng. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area,Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(1): 1-10.
[14] Zhao Wen-tao, Jing Tie-ya, Wu Bin, Zhou You, Xiong Xin. Controlling mechanism of faults on the preservation conditions of shale gas:A case study of Wufeng-Longmaxi Formations in Southeast Chongqing [J]. Natural Gas Geoscience, 2018, 29(9): 1333-1344.
[15] Qiu Zhen,Zou Cai-neng,Li Xi-zhe,Wang Hong-yan,Dong Da-zhong,Lu Bin,Zhou Shang-wen,Shi Zhen-sheng,Feng Zi-qi,Zhang Meng-qi. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale:A case study of the Wufeng-Longmaxi Formations in South China [J]. Natural Gas Geoscience, 2018, 29(5): 606-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] . [J]. Natural Gas Geoscience, 0, (): 6 .
[8] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[9] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[10] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .