Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (2): 176-183.doi: 10.11764/j.issn.1672-1926.2019.09.008

Previous Articles     Next Articles

Experimental study on the relationship between sediment particle size and composition and gas hydrate synthesis rate

Yan-jun LIU(),Lin-chuan LI()   

  1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500 China
  • Received:2019-09-05 Revised:2019-09-30 Online:2020-02-10 Published:2020-02-28
  • Contact: Lin-chuan LI E-mail:llch1186@163.com;494334502@qq.com
  • Supported by:
    National Key R & D Plan(2016YFC0304008)

Abstract:

Rapid synthesis of natural gas hydrate is very important in the industrialization of hydrate technology. Therefore, it is important to study the influencing factors of hydrate synthesis rate. However, experimental data on the relationship between particle size and composition of sediment and hydrate synthesis rate are seriously insufficient. To this end, a natural hydrate device was used to synthesize natural gas hydrate deposits at 3 ℃, 10 MPa axial pressure and confining pressure, SDS system, and the relationship between particle size, particle size ratio and hydrate synthesis rate was established. The results show: The rate of hydrate synthesis decreases with the increase of the particle size of the sediment, and the decrease gradually decreases; When the sediment particle size is small enough, the hydrate synthesis rate has little to do with the type of sediment medium; Under the proportion of different particle sizes, as the proportion of small particle size media increases, the hydrate synthesis rate first rises and then decreases, and when the small particle size medium reaches a certain proportion, the hydrate synthesis rate is greater than the single medium; The size and proportion of the sediment mainly change the specific surface area of the sediment particles, which in turn affects the hydrate synthesis rate. This has certain reference value for the rapid synthesis of natural gas hydrates, which helps to promote the industrialization of hydrates.

Key words: Gas hydrate, Rapid synthesis, Sediment medium, Particle size component, Synthesis rate

CLC Number: 

  • TE132.2

Table 1

Experimental data of hydrate synthesis under different sediment particle sizes"

介质类型粒径/μm消耗天然气体积/mL合成水合物体积/cm3合成时间/min合成速率/(cm3/min)
石英砂231 56811.850260.456
381 47511.147330.338
481 36410.308360.286
751 2459.409460.204
1501 1398.607850.101
2501 0988.2981380.060
3801 0537.9581860.043
棕刚玉231 68812.756300.425
381 48511.222370.303
481 56011.789350.337
751 36510.315450.229
1501 2669.567660.145
2501 2019.0761120.081
3801 1488.6761440.060

石英砂—

棕刚玉

231 57011.865250.474
381 43610.852270.402
481 34310.149420.241
751 2659.559630.152
1501 1538.713790.110
2501 0798.154980.083
3801 0257.7461100.070

Table 2

Experimental data of hydrate synthesis under different sediment particle size ratios"

介质类型θ1/%θ2/%消耗天然气体积/mL合成水合物体积/cm3合成时间/min合成速率/(cm3/min)
石英砂01001 0537.9581830.043
30701 39510.542310.340
50501 52211.502200.575
70301 62412.273180.682
10001 56811.849260.456
棕刚玉01001 1488.6761440.060
30701 48611.230330.340
50501 65312.492290.431
70301 73213.089180.727
10001 62312.265300.409

Fig. 1

Relationship between gas hydrate synthesis time and sediment particle size"

Fig.2

Relationship between gas hydrate synthesis rate and sediment particle size"

Table 3

Value table of a, b, c and k under different sediment medium conditions"

类型abck相关系数
石英砂0.112-1.902×10-40.6000.9760.998 63
棕刚玉0.145-2.339×10-40.4140.9820.974 16
混合物0.099-6.806×10-50.8110.9690.964 12

Fig.3

Relationship between gas hydrate synthesis time and 23 μm particle size ratio"

Fig.4

Relationship between gas hydrate synthesis rate and 23 μm particle size ratio"

Table 4

Value table of A, B, C and D under different sediment media conditions"

类型ABCD相关系数
石英砂0.0420.0061.885×10-4-2.105×10-60.999
棕刚玉0.069-3.429×10-53.298×10-4-2.945×10-60.935
1 KELE Y, BING Z, SUXIA J, et al. Review on flow characteristics and rheological properties of hydrate slurry[J]. Chemical Industry & Engineering Progress, 2015.
2 JAVANMARDI J, MOSHFEGHIAN M. Energy consumption and economic evaluation of water desalination by hydrate phenomenon[J]. Applied Thermal Engineering, 2003, 23(7):845-857.
3 SLOAN, DENDY E. Fundamental principles and applications of natural gas hydrates[J]. Nature (London), 2003, 426(6964):353-363.
4 GOLOMBOK M, INEKE E, LUZARDO J C R, et al. Resolving CO2, and methane hydrate formation kinetics[J]. Environmental Chemistry Letters, 2009, 7(4):325-330.
5 ROGERS R, YEVI G, SWALM M. Hydrate for Storage of Natural Gas[C]. Proceeding of the 2nd International Conference on Gas Hydrate, France: Toulouse, 1996:423-429.
6 周春艳, 郝文峰, 冯自平. 孔板气泡法缩短天然气水合物形成诱导期[J]. 天然气工业, 2005, 25(7):27-29.
ZHOU C Y, HAO W F, FENG Z P. Shortening the induction period of gas hydrate formation by orifice plate bubble method[J].Natural Gas Industry, 2005, 25(7):27-29.
7 谢应明, 刘道平, 樊燕, 等. 喷雾式天然气水合物储气系统的实验研究[J]. 上海理工大学学报, 2007, 29(4):368-372.
XIE Y M, LIU D P, FAN Y, et al. Experimental study on spray gas hydrate storage system[J]. Journal of University of Shanghai for Science and Technology, 2007, 29 (4):368-372.
8 KARAASLAN U, PARLAKTUNA M. Surfactants as Hydrate Promoters?[J].Energy & Fuels,2000,14(5):1103-1107.
9 王恺钊. SDS体系下天然气水合物合成实验研究[D]. 成都:西南石油大学, 2018.
WANG K Z. Experimental Study on Gas Hydrate Synthesis in SDS System [D]. Chengdu:Southwest Petroleum University, 2018.
10 UCHIDA T, EBINUMA T, ISHIZAKI T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. Journal of Physical Chemistry B, 1999, 103(18):3659-3662.
11 YANG M J, SONG Y C, LIU Y, et al. Influence of pore size, salinity and gas composition upon the hydrate formation conditions[J]. Chinese Journal of Chemical Engineering, 2010, 18(2):292-296.
12 李明川, 樊栓狮, 赵金洲. 多孔介质中天然气水合物形成实验研究[J]. 天然气工业, 2006, 26(5):27-28.
LI M C, FAN S S, ZHAO J Z. Experimental research on formation of natural gas hydrate in porous media[J]. Natural Gas Industry, 2006, 26(5):27-28.
13 杨明军, 宋永臣, 刘瑜. 多孔介质及盐度对甲烷水合物相平衡影响[J]. 大连理工大学学报, 2011, 51(1):31-35.
YANG M J, SONG Y C, LIU Y. Effect of porous media and salinity on phase equilibrium of methane hydrate[J]. Journal of Dalian University of Technology, 2011, 51(1):31-35.
14 KANG S P, LEE J W. Kinetic behavior of CO2 hydrates in porous media and effect of kinetic promoter on the formation kinetics[J]. Chemical Engineering Science, 2010, 65(5):1-9.
15 李金平, 焦亮, 张学民, 等. 石英砂孔径介质中二氧化碳水合物生成过程研究[J]. 甘肃科学学报, 2015, 27(1):82-85.
LI J P, JIAO L, ZHANG X M, et al. Study on the formation process of carbon dioxide hydrate in quartz sand aperture media [J]. Journal of Gansu Sciences, 2015, 27(1):82-85.
16 玄建. 天然气水合物合成及降压开采实验研究[D]. 青岛:中国石油大学, 2009.
XUAN J. Experimental Study on Synthesis and Depressurization of Natural Gas Hydrate[D]. Qingdao:China University of Petroleum, 2009.
17 刘艳军, 董孟阳, 江磊磊, 等. 天然气水合物沉积物颗粒影响实验[J]. 储能科学与技术, 2017,6(4):789-798.
LIU Y J, DONG M Y, JIANG L L, et al. Gas hydrate deposit particle influence experiment[J]. Energy Storage Science and Technology, 2017,6(4):789-798.
18 陈玉凤, 李栋梁, 梁德青, 等. 含天然气水合物的海底沉积物的电学特性实验[J].地球物理学进展,2013,28(2):1041-1047.
CHEN Y F, LI D L, LIANG D Q, et al. Electrical characteristic of seabed sediments containing natural gas hydrate[J]. Progress in Geophysics, 2013, 28(2):1041-1047.
19 董孟阳. 水合物沉积物基础物性实验研究[D]. 成都:西南石油大学, 2017.
DONG M Y. Experimental Study on Basic Physical Properties of Hydrate Deposits[D]. Chengdu:Southwest Petroleum University, 2017.
20 NAJIBI H, SHAYEGAN M M, HEIDARY H. Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS[J]. Journal of Natural Gas Science & Engineering, 2015, 23:315-323.
21 JR S E. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964):353-63.
22 VORONOV V P, GORODETSKII E E, PODNEK V E, et al. Properties of equilibrium carbon dioxide hydrate in porous medium[J]. Chemical Physics, 2016, 476:61-68.
23 张学民, 李金平, 吴青柏, 等. 孔隙介质中二氧化碳水合物生成过程实验研究[J]. 应用基础与工程科学学报, 2016,24(1):168-175.
ZHANG X M, LI J P, WU Q B, et al. Experimental study on the formation process of carbon dioxide hydrate in porous media[J]. Journal of Applied Basic and Engineering Science, 2016,24(1):168-175.
[1] Fan Dong-wen, Lu Zhen-quan, Liu Hui, Xiao Rui, Wang Wei-chao, Li Yong-hong, Tang Shi-qi. Gas composition and geological significance of headspace gases from the gas hydrate scientific drilling holes in Harhu Depression,southern Qilian Basin [J]. Natural Gas Geoscience, 2019, 30(4): 526-538.
[2] Liu Jie, Yang Rui, Wu Dai-dai, Jin Guang-rong. Estimation of microbial hydrate resources based on hydrocarbon generation material balance method:Case study of deep water area in southwestern Qiongdongnan Basin [J]. Natural Gas Geoscience, 2019, 30(4): 539-548.
[3] Jin Li-na,Yu Xing-he,Dong Yi-si,Shan Xin,He Yu-lin,Lin Lin. The evolution of Quaternary depositional system in gas hydrate exploration area in Qiongdongnan Basin and its relationship with BSR [J]. Natural Gas Geoscience, 2018, 29(5): 644-654.
[4] Chen Yu-feng, Zhou Xue-bing, Liang De-qing, Wu Neng-you. Resistivity changes of natural gas hydrate formation and dissociation in sediments [J]. Natural Gas Geoscience, 2018, 29(11): 1672-1678.
[5] Yang Sen, Wu Shi-guo, Wang Ji-liang, Qin Yong-peng. Thickness of gas hydrate stability zone calculated by machine learning method [J]. Natural Gas Geoscience, 2018, 29(11): 1679-1690.
[6] Wu Chuang,Yin Hong-wei,Yu Chang-qing,Pi Jing-yun,Wu Zhen-yun,Wang Wei,Zhang Jia-xing. The structural accumulation mechanism of the natural gas hydrates in Muli region of Qinghai Province:Revelation from physical simulation experiment [J]. Natural Gas Geoscience, 2017, 28(5): 771-784.
[7] Ai Zhi-jiu,Wang Jie. Study on kinetic model of natural gas hydrate dissociation [J]. Natural Gas Geoscience, 2017, 28(3): 377-382.
[8] Liu Jie,Zhang Jian-zhong,Sun Yun-bao,Zhao Tie-hu. Gas hydrate reservoir parameter evaluation using logging datain the Shenhu area,South China Sea [J]. Natural Gas Geoscience, 2017, 28(1): 164-172.
[9] Xiao Hong-ping, Wu Qing-bai, Lin Chang-song, Wei Wei, Zhang Jin-hua, Peng Yong, Zhang Peng, Zhang Qiao-zhen. Preliminary discussion on the space-time coupling of natural gas hydrate accumulation elements:A case study from Kunlun Pass permafrost regions,Qinghai-Tibet Plateau [J]. Natural Gas Geoscience, 2016, 27(10): 1913-1923.
[10] SUN Jia-xin,NING Fu-long,ZHENG Ming-ming,ZHANG Ling,LIU Tian-le,ZHOU Xin,JIANG Guo-sheng,Chikhotkin V F. Numerical Simulation on Natural Gas Hydrate Formation withinPorous Media Using Constant Volume Method [J]. Natural Gas Geoscience, 2015, 26(11): 2172-2184.
[11] LIU Jie,LIU Jiang-ping,CHENG Fei,YANG Wen-hai. Filling-models Analysis of the Natural Gas Hydrate on the Rock Physical Method  in the Qinghai-Tibet Plateau [J]. Natural Gas Geoscience, 2015, 26(11): 2198-2207.
[12] SU Pi-bo, QIAO Shao-hua, FU Shao-ying, LIANG Jin-qiang, SU Ming, YANG Rui, WU Neng-you. Numerical Simulation of Gas Hydrate Accumulation in Qiongdongnan Basin, Northern South China Sea [J]. Natural Gas Geoscience, 2014, 25(7): 1111-1119.
[13] ZHENG Ming-ming, JIANG Guo-sheng, NING Fu-long, LIU Li, ZHANG Lin, LI Shi, ZHANG Ke,Chikhotkin V.F.. Experimental Study on Artificial Core Samples of Simulating Hydrate Bearing Sediment Skeleton in Permafrost [J]. Natural Gas Geoscience, 2014, 25(7): 1120-1126.
[14] LIU Le-le,LU Xiao-bing,ZHANG Xu-hui.
Numerical Study on Porous Media′s Deformation Due to Natural  Gas Hydrate Dissociation Considering Fluid-Solid Coupling
[J]. Natural Gas Geoscience, 2013, 24(5): 1079-1085.
[15] ZHOU Xi-tang, FAN Shuan-shi, LIANG De-qing. Kinetic Research on Replacement of Methane in Gas Hydrate with Carbon Dioxide Emulsion [J]. Natural Gas Geoscience, 2013, 24(2): 259-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[2] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[3] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .
[4] . [J]. Natural Gas Geoscience, 0, (): 9 .
[5] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .
[6] SHI Li-zhi;LIN Tie-fen;WANG Zhen-liang;WANG Zhuo-zhuo;YAO Yong. RESEARCH ON THE MIGRATION AND ACCUMULATION SYSTEMS OF NATURAL GAS AND HYDROCARBON MIGRATION OF THE LOWER CRETACEOUS STRATA IN KUQA DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 78 -83 .
[7] WANG Ru. GEOCHEMICAL CHARACTERISTICS AND HYDROCARBON RESERVOIR FORMING PROCESURE ANALYSIS OF TWO TERMS OF RESERVOIR FORMING IN SHENGTUO OI LFIELD[J]. Natural Gas Geoscience, 2006, 17(1): 133 -136 .
[8] . GEOCHEMICAL CHARACTERISTICS OF KONGQUE 1 WELL PROFILE  AND VERTICAL MIGRATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2006, 17(2): 148 -152 .
[9] . A NEW METHOD FOR CALCULATING MATURITY OF OIL [J]. Natural Gas Geoscience, 2006, 17(2): 160 -162 .
[10] ZHU Zhi-min~1,SHEN Bing~1,YAN Jian-fei~2. DISCUSS ON INORGANIC NATURAL GAS IN THE FUXIN BASIN[J]. Natural Gas Geoscience, 2006, 17(3): 418 -421 .