Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (1): 73-83.doi: 10.11764/j.issn.1672-1926.2019.07.014

Previous Articles     Next Articles

Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space

Han ZHAO1,2,3(),Zhong-liang MA1,4,5(),Lun-ju ZHENG4,5,Jing-qiang TAN1,2,3,Qun LI1,2,3,Zhang-hu WANG1,2,3,Chuan-xiang NING4,5   

  1. 1.School of Geosciences and Info?Physics, Central South University, Changsha 410083, China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring Ministry of Education, School of Geoscience and Infophysics, Central South University, Changsha 410083, China
    3.Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China
    4.Wuxi Research Institute of Petroleum Geology, Sinopec, Wuxi 214126, China
    5.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, China
  • Received:2019-06-09 Revised:2019-07-08 Online:2020-01-10 Published:2020-01-09
  • Contact: Zhong-liang MA E-mail:1065547633@qq.com;mazl.syky@sinopec.com
  • Supported by:
    China National Science & Technology Major Project(2017ZX05036002-004);National Natural Science Foundation of China(41872151);Innovation-driven Project of Central South University(502501005);Fundamental Research Funds for the Central Universities of Central South University(502221901)

Abstract:

Hydrocarbon generation reaction is comprehensively affected by temperature, static pressure, and pore pressure of strata in the limited pore space of the source rocks, and the thermal simulation experiment is a useful method to model hydrocarbon generation of organic matter. However, many thermal simulation experiments are limited by instrumentation, and only consider the effect of temperature, which is obviously different from the actual geological conditions. Here, the Hetaoyuan Formation mudstone of Well B215 in Biyang Depression is selected as samples to conduct simulation experiment of temperature and pressure co-controlling in finite space and that of only temperature-controlled, respectively. The oil and gas products under the two experiments have been analyzed by group composition, isotope, GC, GC-MS. The results indicate that: (1) The saturated hydrocarbons from residual oil can be preserved at a higher evolution stage under the condition of temperature and pressure co-control in finite space; (2) Under the same simulation temperature, the parameters Pr/Ph, Pr/C17 of the residual oil saturated hydrocarbons are higher in temperature and pressure co-control thermal simulation experiment, while the parameters C29 20S/(20S+20R) and C29 ββ/(αα+ββ) etc. of residual oil steroids and terpenoids are smaller than those of temperature-controlled experiment; (3) The value of carbon isotope δ13C of hydrocarbon gas under the thermal simulation of temperature and pressure co-control in finite space is higher than that of temperature-controlled thermal simulation. The above phenomena are mainly caused by the existence of high-pressure pore fluid, which delays the process of thermal maturation and crude oil cracking under the simulation experiment of temperature and pressure co-control in finite space. Therefore, the potential overpressure and formation water in the study area should be considered when conducting thermal simulation experiment, since it directly affects the geological applicability of the simulation results.

Key words: Temperature and pressure co-control in finite space, Temperature-controlled, Thermal simulation, residual oil, Geochemistry

CLC Number: 

  • TE122.1+13

Table 1

Geochemical characteristics of source rocks under two different thermal simulation experiments"

热模拟方式

埋深

/m

RO

/%

Tmax

/℃

TOC

/%

氯仿沥青“A”

/%

S2

/(mg/g)

IH

/(mg/g)

IO

/(mg/g)

有限空间温压共控热模拟1 523.00.384442.640.073 915.8360014
温控热模拟1 532.50.384453.220.041 922.3068413

Table 2

Experimental conditions for hydrocarbon generation under two different thermal simulation experiments[16]"

序号埋深/m温度/℃有限空间温压共控热模拟温控热模拟
静岩压力/MPa最低地层流体压力/MPa最高地层流体压力/MPa

Ro

/%

加水量/mL实际体系压力/MPa

RO

/%

11 50027534.5015.0022.500.356.04.100.34
21 70030039.1017.0025.500.416.06.600.39
32 00032546.0020.0030.000.536.09.800.48
42 26135052.0022.6133.920.816.011.400.92
52 40036055.2024.0036.000.986.014.201.01
62 50037057.5025.0037.501.426.015.101.45
72 80038064.4028.0042.001.676.015.901.61
83 00040069.0030.0045.002.066.018.302.04
94 00042592.0040.0060.002.406.022.202.61
105 000450115.0050.0075.002.766.023.103.10
116 500500149.5065.0097.503.186.034.703.38

Fig.1

Schematic diagram of two different thermal simulation experiments"

Fig.2

Comparison of residue oil and removed oil production rate between two different thermal simulation experiments"

Fig.3

Evolution characteristics of residual oil group component under two different thermal simulation experiments"

Fig.4

Evolution characteristics of residual oil saturated hydrocarbon parameters under two different thermal simulation experiments"

Fig.5

Comparison of parameters of residual oil sterane and terpane compounds under two different thermal simulation experiments"

Fig.6

Carbon isotope of group composition of residual oil under two different thermal simulation experiments"

Fig.7

Relationship between carbon isotope composition of gaseous hydrocarbons and simulated temperature under two different thermal simulation experiments"

1 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. New York: Springer-Verlag,1984: 699.
2 BURNHAM A K, BRAUN R L, SAMOUN A M. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters[J]. Organic Geochemistry,1988, 13(4-6): 0-845.
3 CONNAN J. Time-temperature relation in oil genesis[J]. AAPG Bulletin,1976, 58 (12): 2516-2521.
4 李志明, 郑伦举, 马中良,等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451.
LI Z M, ZHENG L J, MA Z L, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geolgogy & Experiment, 2011, 33(5): 447-451.
5 关德范, 徐旭辉, 李志明, 等. 烃源岩有限空间生排烃基础研究新进展[J]. 石油实验地质, 2011, 33(5): 441-446.
GUAN D F, XU X H, Li Z M, et al. New progress in basic studies of hydrocarbon generation and expulsion of source rock in finite space[J]. Petroleum Geology & Experiment, 2011, 33(5): 441-446.
6 郑伦举, 秦建中, 何生,等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302.
ZHENG L J, QIN J Z, HE S, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302.
7 郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学:中国地质大学学报, 2011, 36(1): 83-92.
ZHENG L U, HE S, QIN J Z, et al. Formation water of near-critical properties and its effects on the processes of hydrocarbon generation and expulsion[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(1): 83-92.
8 米敬奎, 张水昌, 王晓梅. 不同类型生烃模拟实验方法对比与关键技术[J]. 石油实验地质, 2009, 31(4): 409-414.
MI J K, ZHANG S C, WANG X M. Comparison of different hydrocarbon generation simulation approaches and key technique[J]. Petroleum Geology & Experiment, 2009, 31(4): 409-414.
9 王民, 卢双舫, 王东良, 等. 不同热模拟实验煤热解产物特征及动力学分析[J]. 石油学报, 2011, 32(5):806-814.
WANG M, LU S F, WANG D L, et al. Characteristics and kinetic of coal pyrolysates with different thermal simulation apparatuses[J]. Acta Petrolei Sinica, 2011, 32(5):806-814.
10 彭威龙, 胡国艺, 刘全有,等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9):40-51.
PENG W L, HU G Y, LIU Q Y, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9):40-51.
11 刘全有, 刘文汇, 宋岩,等. 塔里木盆地煤岩显微组分热模拟实验中液态烃特征研究[J]. 天然气地球科学, 2004, 15(3):297-301.
LIU Q Y, LIU W H, SONG Y, et al. Characteristics of liquid hydrocarbon for Tarim coal and its macerals in thermal pyrolysis experiments[J]. Natural Gas Geoscience, 2004, 15(3):297-301.
12 刘全有, 刘文汇, 孟仟祥. 塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机地球化学特征[J]. 天然气地球科学,2006, 17(3): 313-318.
LIU Q Y, LIU W H, MENG Q X. Organic geochemistry of nalkanes from Tarim coal with different materials in pyrolysis under closed system[J]. Natural Gas Geoscience, 2006, 17(3): 313-318.
13 刘全有, 刘文汇, 孟仟祥. 热模拟实验中煤岩及显微组分饱和烃甾烷系列化合物有机地球化学特征[J]. 天然气地球科学, 2007, 18(2): 249-253.
LIU Q Y, LIU W H, MENG Q X. Geochemical characteristics of steranes in saturated hydrocarbons from coal and exinite in pyrolysis under closed systems[J]. Natural Gas Geoscience, 2007, 18(2): 249-253.
14 孙涛,段毅.煤系有机质生成烃类中甾烷系列化合物地球化学特征——以高温封闭体系下热模拟实验为例[J]. 天然气地球科学,2011, 22(6): 1082-1087.
SUN T, DUAN Y. Geochemical characteristics of steranes of coal generated hydrocarbons: A case of high temperature and fined simulated experiment[J]. Natural Gas Geoscience,2011, 22(6): 1082-1087.
15 孙丽娜, 张中宁, 吴远东,等. 生物标志化合物热成熟度参数演化规律及意义——以Ⅲ型烃源岩HTHP生排烃热模拟液态烃产物为例[J]. 石油与天然气地质, 2015, 36(4):573-580.
SUN L N, ZHANG Z N, Wu Y D, et al. Evolution patterns and their significances of biomarker maturity parameters:A case study on liquid hydrocarbons from type III source rock under HTHP hydrous pyrolysis[J]. Oil & Gas Geology, 2015, 36(4):573-580.
16 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5):955-963.
MA Z L, ZHENG L J, LI Z M. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5):955-963.
17 魏琴. 煤温压热模拟实验中排出物及残留物的地球化学表征[D]. 北京:中国地质大学,2018.
WEI Q. Geochemical Characterization of Hydrocarbon Generation and Expulsion From Thermal and Pressure Simulation of Coal[D]. Beijing :China University of Geosciences, 2018.
18 余晓露, 马中良, 郑伦举, 等. 不同热模拟方式下烃源岩干酪根演化特征红外光谱分析[J]. 石油实验地质, 2017, 39(1):134-140.
YU X L, MA Z L, ZHENG L J, et al. FTIR analyses of source rock kerogen from different hydrous pyrolysis experiments[J].Petroleum Geology & Experiment,2017,39(1):134-140.
19 HAVEN H L TEN, DE LEEUW J W, RULLKÖTTER J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149):641-643.
20 CHEN Z H, ZHANG S C, ZHA M. Geochemical evolution during the cracking of crude oil into gas under different pressure systems[J]. Science China Earth Sciences, 2014, 57(3):480-490.
21 HAO F, LI S T, DONG W L, et al. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems[J]. Journal of Petroleum Geology, 2010, 21(4):427-444.
22 刘光祥. 塔里木盆地S74井稠油热模拟实验研究(一)——模拟产物地球化学特征[J]. 石油实验地质, 2008, 30(2):179-185.
LIU G X. Thermal simulation study of crude oil from Well S74 in the Tarim Basin(Ⅰ):Geochemical characteristics of the simulation products[J]. Petroleum Geology & Experiment, 2008, 30(2):179-185.
23 蒋文龙. 西加盆地烃源岩自然演化与热模拟地球化学特征对比研究[D]. 北京:中国地质大学, 2016.
JIANG W L. Comparative Study on the Source Rock Geochemical Characteristics of Natural Evolution and Yhermal Simulation in Western Canada Sedimentary Basin[D]. Beijing :China University of Geosciences, 2016.
24 PRICE L C, MACKO S A, ENGEL M H, et al. Thermal stability of hydrocarbons in nature; limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochimica Acta, 1993, 57(14):3261-3280.
25 张中宁, 刘文汇, 王作栋,等. 塔北隆起深层海相油藏中原油及族组分碳同位素组成的纵向分布特征及其地质意义[J]. 沉积学报, 2008, 26(4):709-714.
ZHANG Z N, LIU W H, WANG Z D, et al. Vertical distribution characteristics and its geological Significance for carbon isotopic composition of oils and its group components of deep marine oil reservoirs in Tabei Uplift Tarim Basin[J]. Acta Se-dimentologica Sinica, 2008, 26(4):709-714.
26 刘虎, 廖泽文, 张海祖, 等.干酪根及其演化产物中稳定碳同位素的倒转分布—研究进展及对塔里木盆地海相油气藏研究的启发[J]. 矿物岩石地球化学通报, 2013, 32(4): 497-502.
LIU H, LIAO Z W, ZHANG H Z, et al. Review of the study on stable carbon isotope reversal between kerogen and its evolution products: Implication for the research of the marine oil reservoirs in the Tarim Basin, NW China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 497-502.
27 张文正. 有机质碳同位素的成熟分馏作用及地质意义[J]. 石油实验地质, 1989, 11(2):177-184.
ZHANG W Z. Fractionation of carbon isotopes of organic matter and its geological significence[J]. Petroleum Geology & Experiment, 1989, 11(2):177-184.
28 刘文汇, 王杰, 腾格尔,等. 南方海相不同类型烃源生烃模拟气态烃碳同位素变化规律及成因判识指标[J]. 中国科学:地球科学, 2012,42(7):973-982.
LIU W H, WANG J, TENG G E, et al. Stable carbon isotopes of gaseous alkanes as genetic indicators inferred from laboratory pyrolysis experiments of various marine hydrocarbon source materials from southern China[J]. Science China: Earth Science, 2012,42(7):973-982.
29 戴金星, 夏新宇, 秦胜飞, 等. 中国有机烷烃气碳同位素系列倒转的成因[J]. 石油与天然气地质, 2003, 24(1):1-6.
DAI J X, XIA X Y, QIN S F, et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J]. Oil & Gas Geology, 2003, 24(1):1-6.
30 戴金星. 天然气中烷烃气碳同位素研究的意义[J]. 天然气工业, 2011, 31(12):1-6.
DAI J X. Significance of the study on carbon isotopes of alkane gases[J]. Natural Gas Industry, 2011, 31(12):1-6.
[1] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[2] Shan WANG, Ying-hui CAO, Ya-jin ZHANG, De-dao DU, Zhao-hui XU, Min YANG, Yi-min ZHAO. Origin and geochemical characteristics of siliceous rocks in the third Member of Yingshan Formation in Gucheng area, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 710-720.
[3] Zeng-ye XIE, Chun-long YANG, Cai-yuan DONG, Xin DAI, Lu ZHANG, Jian-ying GUO, Ze-qing GUO, Zhi-sheng LI, Jin LI, Xue-ning QI. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin, China [J]. Natural Gas Geoscience, 2020, 31(4): 447-461.
[4] Ming ZHU, Ze-liang LIANG, Jian MA, Zhi-chao PANG, Jun WANG, Yue JIAO. Patterns of hydrocarbon generation and reservoir distribution in the Jurassic strata, Sikeshu Sag, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(4): 488-497.
[5] Hai-lei LIU, Hui LI, Hui XIANG, Xue-yong WANG, She-kuan DU. Geochemistry, genesis and distribution of crude oils in the Fukang fault zones and their periphery in Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 258-267.
[6] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
[7] Wei-qiang HU, Yang-bing LI, Xin CHEN, Li-tao MA, Cheng LIU, Ying HUANG, Fang QIAO, Duo WANG, Zai-zhen LIU. Origin and source of natural gas in the Upper Paleozoic in Linxing area, Ordos Basin [J]. Natural Gas Geoscience, 2020, 31(1): 26-36.
[8] Tang You-jun, Yang Yi-zhuo, Meng Xian-xin, Wang Ting, He Da-xiang, Li Meng-ru, Ji Chang-jun, Sun Peng, Cai Yi-lan. Influence of volcanic activity on geochemical characteristics of hydrocarbonsource rocks in the Quse Formation in the South Qiangtang Basin [J]. Natural Gas Geoscience, 2019, 30(5): 721-728.
[9] Kang Guang-xing, Xu Xue-min, Wang Shuang-qing, Yang Jia-jia, Sun Wei-lin, Shen Bin, Qin Jing, Lu Ran, Zhang Xiao-tao, Guo Wang. Experimental study on thermal evolution of kerogen in Paleozoic#br# #br# Experimental study on thermal evolution of kerogen in Paleozoic#br# [J]. Natural Gas Geoscience, 2019, 30(4): 593-602.
[10] Xiao-nan Ding,Xiao-bing Niu,ping Guan,Xiao-wei Liang,Xiao-wen Wang,Sheng-bin Feng,yuan You. Response of organic geochemical parameters of Chang 7 member to the effect of tight oil utilization in Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(10): 1487-1495.
[11] Wang Shuai, Wang Gan-lu, Qin Zheng, Gao Ze-yuan, Luo Teng. Geochemical characteristics of rare earth elements in karst reservoirs in  Maokou Formation,northern Guizhou Province [J]. Natural Gas Geoscience, 2019, 30(1): 143-150.
[12] Li Meng-ru, Tang You-jun, Liu Yan, Hu Hui, He Qi-chuan. Geochemical characteristics and oil-source correlation in crude oils from different regions of Jiangling Depression [J]. Natural Gas Geoscience, 2018, 29(9): 1240-1251.
[13] Peng Wei-long, Hu Guo-yi, Liu Quan-you, Jia Nan, Fang Chen-chen, Gong De-yu, Yu Cong, Lü Yue, Wang Peng-wei, Feng Zi-qi. Research status on thermal simulation experiment and several issues for concerns [J]. Natural Gas Geoscience, 2018, 29(9): 1252-1263.
[14] Jia Zhi-bin, Hou Du-jie, Sun De-qiang, Jiang Yu-han, Zhang Zi-ming, Hong Mei. Geochemical characteristics of source rocks in the Lower Cambrian Niutitang Formation,Guizhou Province [J]. Natural Gas Geoscience, 2018, 29(7): 1031-1041.
[15] Chen Fei-ran, Zhang Yi-jie, Zhu Guang-you, Zhang Bao-shou, Lu Yu-hong, Zhang Zhi-yao. Geochemistry and accumulation process of deep natural gas in the platform-basin region,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(6): 880-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[4] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(1): 27 .
[7] . [J]. Natural Gas Geoscience, 0, (): 6 .
[8] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[9] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[10] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 8 -18 .