引用本文

Han Zhongxi,Li Jian,Gou Yanxia,et al.The application of methane and ethane carbon isotopes as an identification index for gas origin study[J].Natural Gas Geoscience,2016,27(4):665-671.[韩中喜,李剑,垢艳侠,等.甲、乙烷碳同位素用于判识天然气成因类型的讨论[J].天然气地球科学,2016,27(4):665-671.]
doi:10.11764/j.issn.1672-1926.2016.04.0665

甲、乙烷碳同位素用于判识天然气成因类型的讨论

韩中喜1,2 ,李剑2,垢艳侠2,严启团2,王淑英2,李谨2,刘金丰3,葛守国2 

摘要  
随着天然气勘探不断向深层发现,高—过成熟天然气越来越多,早期基于成熟—高成熟天然气所建立的用甲、乙烷碳同位素判识天然气成因类型的指标或图版不断显示出一系列的问题。为完善甲、乙烷碳同位素判识指标或图版,采集了中国7个含气盆地近200多口井的天然气样品,分别开展了天然气组分和烷烃碳同位素分析,并对部分气井的天然气样品开展了天然气汞含量分析,研究表明对于大多数天然气来说用乙烷碳同位素δ13C2=-28‰或-29‰作为划分煤型气和油型气的界限是合理的,但对于部分演化程度较高的天然气来说还需要结合甲烷碳同位素进行综合判断。在用甲、乙烷碳同位素判断天然气类型的图版中,煤型气和油型气的划分界限为δ13C2=-(10.2δ13C1+1 246)/29.8,当δ13C2>-(10.2δ13C1+1 246)/29.8时,天然气类型为煤型气;当δ13C2<-(10.2δ13C1+1 246)/29.8且δ13C1>-55‰时,天然气类型为油型气;当δ13C1<-55‰时为生物气。

关键词 甲烷       乙烷       碳同位素       天然气       成因类型       判识图版      

中图分类号:TE122.1      文献标志码:A      文章编号:1672-1926(2016)04-0665-07

The application of methane and ethane carbon isotopesas an identification index for gas origin study

Han Zhong-xi1,2 ,Li Jian2,Gou Yan-xia2,Yan Qi-tuan2,Wang Shu-ying2,Li Jin2,Liu Jin-feng3,Ge Shou-guo2 

Abstract  
With the development of natural gas exploration into the deep zone,high-over mature natural gas is becoming more and more common.Previous index or chart for identification of natural gas genetic type based on mature-highmature natural gas is showing some problems.In order to improve this index or chart,the authors collected natural gas samples from more than 200 wells of 7 basins in China.The compositions and hydrocarbon isotopes of these samples were analyzed,and some of them were measured for mercury content.The research shows that for most of the natural gas,using ethane carbon isotope δ13C2=-28‰ or -29‰ as the genetic type identification index to distinguish coal type gas and oil type is reasonable,but this is not applicable for the high-mature gas.It is necessary to combine methane and ethane carbon isotope to identify the genetic type of the gas.On the identification chart,the line for dividing coal type gas and oil type gas would be δ13C2=-(10.2δ13C1+1 246)/29.8.When δ13C2>-(10.2δ13C1+1 246)/29.8,the genetic type of the gas would be coal type,when δ13C2<-(10.2δ13C1+1246)/29.8 and δ13C1>-55‰,the genetic type of the gas would be oil type,and when δ13C1<-55‰,the genetic type of the gas would be biogas.

Key words Methane;       Ethane;       Carbon isotope;       Natural gas;       Genetic type;       Identification chart;      

引言

作为判识天然气成因类型的重要指标之一,甲、乙烷碳同位素在天然气地质研究中得到了广泛的应用。但在使用过程中,也呈现出一些问题,使人们对甲、乙烷碳同位素判识天然气类型的可靠性产生了质疑。如松辽盆地深层的徐深气田,大多数气井的乙烷碳同位素δ13C2值介于-32‰~-29.2‰之间。国内学者一般将乙烷碳同位素δ13C2=-28‰或-29‰作为划分煤型气和油型气的界限[1-3],按照这一划分标准,徐深气田则会被判识成油型气,而这与徐深气田在钻井过程中发现的大量煤系地层事实是不符的。虽然按照乙烷碳同位素划分标准,塔里木盆地阿克莫木气田天然气可以很容易被判识成煤型气,但有相当一部分学者认为阿克莫木气田的天然气主要来自于腐泥型或偏腐泥型的石炭系的海相深灰色泥岩和泥灰岩[4-7]。因此,有必要对甲、乙烷碳同位素在判识天然气成因类型方面的应用作进一步讨论。

1 研究方法

一般认为甲烷碳同位素组成主要受烃源岩的热演化程度的影响,演化程度越高甲烷碳同位素值越大,而乙烷碳同位素既与母质类型有关,又受烃源岩热演化程度的影响,因此可以用甲、乙烷碳同位素来共同判断天然气类型。黄汝昌[8]建立了用甲、乙烷碳同位素判识天然气成因类型的图版,并取得了很好的应用效果。但由于该图版主要是基于成熟气、高成熟天然气甲、乙烷碳同位素规律的总结,随着天然气勘探向深层的发展,过成熟气越来越多,这就需要对该图版作进一步丰富和完善。为此,笔者采集了国内7个含气盆地的近200口井的天然气样品,分别开展了天然气组分和烷烃碳同位素分析。

2 结果及讨论

为便于表述和绘图,对于产自于同一气田、同一产层且相互邻近的一组气井,若天然气组分和烷烃碳同位素数据基本一致,笔者仅取其中一口气井的检测结果列于图1和表1中。对于世界上大多数气田和实验室模拟结果,天然气的烷烃碳同位素序列均为正碳同位素序列,即δ13C113C213C313C4,而负碳同位素序列通常被认为是无机气[3],这可能是黄汝昌[8]在绘制用甲、乙烷碳同位素判识划分天然气成因类型图版时,其δ13C2—δ13C1坐标轴没有出现负值的原因。但随着天然气勘探向深层的不断推进,开始出现一些同位素序列倒转的报道[9-14]。在这些报道当中一般是部分碳同位素倒转,即δ13C113C2或者δ13C313C4。对于烷烃碳同位素的倒转通常被归结为混合成因,即不同气源或不同成熟度天然气的混合[9-15]。但也有一部分报道是同位素序列的完全倒转,如美国Appalachian盆地北部的深层气(埋深>3 000m),其碳同位素序列呈现出δ13C113C213C3的现象。Burruss等[16]认为混合作用不足以造成该地区烷烃碳同位素的完全倒转,在高温(250~300℃)作用下,重烃发生裂解,促使甲烷不断富集13C,从而导致烷烃碳同位素序列的倒转。 因此,对于有机气来说,其δ13C2—δ13C1值是可以出现负值的。根据表1中的碳同位素数据,笔者将黄汝昌[8]的甲、乙烷碳同位素判识模板δ13C2—δ13C1轴由0点向左侧延伸至-10‰处(图1)。通过属于煤型气的徐深气田、双坨子气田、王府气田、迪那2气田和苏里格气田等的甲、乙烷碳同位素值以及属于油型气的黄龙、天东和红台地区的甲、乙烷碳同位素值可以确定出煤型气和油型气的划分界限为δ13C2=-(10.2δ13C1+1 246)/29.8。生物气的特点就是热演化程度很低,可通过反映热演化程度的甲烷碳同位素进行判断。即当δ13C1<-55‰时天然气类型为生物气,当δ13C2<-(10.2δ13C1+1 246)/29.8且δ13C1>-55‰时,天然气类型为油型气,当δ13C2>-(10.2δ13C1+1 246)/29.8时,天然气类型为煤型气。

图1     用甲、乙烷碳同位素判识天然气类型图版
Fig.1     Chart for natural gas genetic type identification by methane and ethane carbon isotope

天然气汞含量也是判识煤型气和油型气的一项重要指标,戴金星等[17]认为煤型气汞含量一般大于700ng/m3,油型气汞含量一般小于600ng/m3。韩中喜等[18]曾对该指标的应用进行了完善,通过大量统计数据发现,当天然气汞含量大于30 000ng/m3时,可基本判断该天然气类型为煤型气。当天然气
表1     中国含气盆地部分气井天然气组分及碳同位素数据
Table 1     Natural gas composition and carbon isotope of some wells from Chinese gas bearing basins
盆地气田/区块井号天然气组成/%烷烃碳同位素/‰烷烃气 类型
N2CO2C1C2C3C4+δ13C1δ13C2δ13C3δ13C4
松辽徐深汪深15.041.7891.491.370.170.14-27.0-29.2-33.5-32.9煤型气[19-22]
喇嘛甸徐深6-2081.470.3295.672.240.220.08-28.3-31.1-33.5-35.1油型气[23]
长深卫深51.030.3193.893.750.700.32-26-22.9-23-22.35煤型气
双坨子芳深90.6088.939.750.560.100.06-24.4-30.3//煤型气[24]
王府徐深9013.895.8787.632.6000-22.4-32.0-32.8/煤型气
红岗徐深9022.472.5992.262.6700-24.65-31.78-32.35-32.5生物气、 过渡带气[25]
喇7-A2310.491.4392.752.191.631.51-46.4-36.6-32.8-31.1
喇4-P2310.480.6993.322.101.811.60-49.8-39.8-33.2-31.6
喇6-P2310.411.6288.673.023.233.05-50.3-39.2-32.8-32.3
长深110.1921.4567.221.100.040-23.5-27.1-26.3/
长深1-16.9615.4576.291.250.050-24.8-28.4-30.9-32.7
坨深14.34087.714.281.781.89-30.4-27.0-26.2-26.6
城深6030.980.1281.739.974.193.01-33.0-27.1-26.1-25.8
红H1043.610.4595.670.230.020.02-54.7-33.7//
红M平14.400.0395.350.2200-54.8-34.0//
红H平36.710.0692.061.000.080.08-50.6-36.0-25.8-30.3
塔里木克深克深2030.720.3098.330.550.040.06-27.7-16.3-19.9/煤型气[26]
克拉2克深2010.700.7897.860.540.040.08-27.6-17.3-19.8/煤型气[27]
迪那2克拉2-10.370.6097.551.340.110.03-26.4-17.8-19.6-20.7煤型气[28]
大北克拉2040.360.4397.731.340.110.03-26.7-19.0-19.8-20.9煤型气[26]
牙哈迪那2040.620.3688.726.762.131.41-34.0-22.1-19.7-20.1煤型气[29]
轮南大北3020.580.8197.081.230.160.14-29.4-19.4-20.0/油型气[30]
塔中牙哈23.950.5482.607.763.092.06-32.2-22.6-19.7-21.6油型气[31]
和田河轮南593.380.4293.491.800.430.48-33.6-33.5-30.5-28.7煤型气[32]
阿克莫木塔中1019.681.2082.983.361.141.64-42.9-40.6-34.6-28.9
塔中2424.471.5088.402.721.131.78-37.7-33.7-30.9-28.8
玛5-19.055.9181.911.780.630.72-36.4-38.0-34.0-30.2
玛4-H111.830.3782.792.531.071.41-36.8-34.1-29.5-28.6
阿克17.5714.3977.040.650.110.24-24.9-21.7//
阿克1-27.8614.4976.680.750.120.10-24.7-21.7-20.2-21.5
榆林榆42-60.242.0092.753.690.850.47-31.3-25.5-23.7-22.4煤型气
苏里格榆41-010.750.5094.403.810.190.35-31.2-24.4-25.2-23.5
苏36-2-40.661.0989.925.551.651.13-33.8-23.0-23.5-22.8
四川天东天东530.258.1491.350.250.010-31.8-31.1//油型气[33]
卧龙河卧910.080.1699.100.630.030-33.2-32.6-27.0/
白节滩白002-10.410.9397.091.380.170.02-31.8-35.8-31.2/
黄龙场黄龙10.603.0795.260.150.920-31.0-32.1//
柴达木东坪东坪14.550.0292.671.930.320.50-25.0-21.8-23.3-26.1煤型气[34]
涩北东坪321.140.6876.691.050.200.23-23.1-25.6-24.7-24.8生物气
台南涩4-3-10.03099.590.310.060.01-67.2-39.4-29.2-27.2
涩4-6-20.06099.380.410.120.03-66.1-48.7-33.9-32.2
涩6-3-40.06099.380.410.120.03-65.6-48.8-34.0-33.3
台5-50.16099.410.330.090.01-68.3-41.5-28.6-31.3
台6-190.11099.410.350.120.01-68.0-44.6-32.6-32.3
表1     中国含气盆地部分气井天然气组分及碳同位素数据(续)
Table 1     Natural gas composition and carbon isotope of some wells from Chinese gas bearing basins(continued)
盆地气田/区块井号天然气组成/%烷烃碳同位素/‰烷烃气 类型
N2CO2C1C2C3C4+δ13C1δ13C2δ13C3δ13C4
准噶 尔克拉美丽滴西10014.56089.943.881.370.25-29.3-26.5-24.1-23.4煤型气
呼图壁呼0011.12092.184.661.050.99-31.0-22.4-21.4-22.5煤型气
呼20021.14092.314.611.020.92-30.6-22.0-21.2-22.4
吐 哈温西温西1-644.410.1380.167.454.343.51-40.2-26.3-24.7-24.7煤型气[35]
丘东242.24081.178.984.513.10-38.7-26.5-25.5-25.3
东深21.59082.768.544.103.01-40.2-26.9-26.1-26.0
红台2023.170.1682.097.713.982.89-37.6-25.9-24.8-24.9
汞含量介于10 000~30 000ng/m3之间时,其为煤型气的几率较大,在结合其他地质资料的情况下也可比较容易得出合理的结论。但当天然气汞含量介于5 000~10 000ng/m3之间,甚至更低时,天然气汞含量只能作为判识煤型气和油型气的辅助参数。在对天然气同位素分析的同时,笔者也对鄂尔多斯、塔里木盆地和松辽盆地的部分天然气井进行了天然气汞含量分析,检测结果如表2所示。可以看出无论是对于甲、乙烷碳同位素未倒转的苏里格气田、榆林气田、牙哈气田和克拉2气田等气田来说,还是对于甲、乙烷碳同位素倒转的徐深气和长深气田而言,其天然气汞含量均大于30 000ng/m3,表明天然气类型应该为煤型气。这一结论也与徐深气和长深气田的勘探实践具有很好的一致性。在徐家围子断陷发育4套煤系地层,包括火石岭组、沙河子组一段、二段和营城组一段,煤层厚度为15~25m[36],在长岭断陷发育营城组和沙河子组2套有效的烃源岩,有机质类型为Ⅱ2—Ⅲ型,推测沙河子暗色泥岩厚度累计为239m[37]。推测徐深和长深气田出现烷烃碳同位素倒转的原因应该与Appalachian盆地北部的深层气是一致的,即在高演化阶段甲烷碳同位素组成不断变重,而乙烷等重烃碳同位素组成不断变轻(δ13C2值小于-28‰或-29‰)。因此,虽然对于大多数天然气来说用乙烷碳同位素δ13C2=-28‰或-29‰作为划分煤型气和油型气的界限对于大多数天然气来说是合理的,但对于部分演化程度较高的天然气来说还需要结合甲烷碳同位素进行综合判断。 关于塔里木盆地阿克莫木气田天然气来源的争议,笔者认为很大一部分原因在于该气田天然气组
表2     中国含气盆地部分气井天然气汞含量数据
Table 2     Natural gas mercury content of some wells from Chinese gas bearing basins
盆地名称气田井号层位层段/m汞含量/(ng/m3)
鄂尔多斯苏里格苏47-17-61P2h83 597~3 62646 100
榆林苏48-15-68P2h83 577~3 59547 500
苏48-17-74P2s13 627.9~3 63148 700
榆42-0P2s22 925.2~2 928.330 600
榆42-1P2s22 993.7~2 998.631 900
塔里木牙哈牙哈23-1-22E5 142.5~5 16334 500
克拉2牙哈23-1-18E+K5 128.1~5 165.432 300
克拉2-4E+K3 577.1~3 715.362 600
克拉2-9K3 780.6~3 883.368 300
松辽徐深徐深1K1yc3 520~3 70564 800
长深徐深6-208K1yc3 550~3 542146 000
徐深901K1yc3 892~3 899168 000
长深1K1yc3 566~3 651187 000
长深1-1K1yc3 701~3 753227 000
成与和田河气田具有很大的像似性,即均含有较多 的氮气和二氧化碳(表1)。但近年来的研究发现, 在喀什凹陷北缘地区石炭系新发现剖面有机质丰度低,生烃潜力有限。而喀什凹陷中心虽然有机质丰度高,但与阿克莫木气田之间有数条断层和断块阻隔。流体包裹体与断裂活动时间分析表明天然气充注在逆冲断层形成之后,故石炭系天然气很难 运移至阿克莫木气田。而热压模拟实验结果表明,阿克1井天然气碳同位素特征与二叠系和侏罗系康苏组烃源岩500℃模拟气比较接近。阿克莫木气田天然气应在主要来自乌恰构造带北部的二叠系和侏罗系腐值型和偏腐值型的烃源岩[30]

3 结论

(1)对于大多数天然气来说用乙烷碳同位素δ13C2=-28‰或-29‰作为划分煤型气和油型气的界限是合理的,但对于部分演化程度较高的天然气来说还需要结合甲烷碳同位素进行综合判断。 (2)在用甲、乙烷碳同位素判断天然气类型时,煤型气和油型气的划分界限为δ13C2=-(10.2δ13C1+1 246)/29.8,当δ13C2>-(10.2δ13C1+1 246)/29.8时,天然气类型为煤型气,当δ13C2<-(10.2δ13C1+1 246)/29.8且δ13C1>-55‰时,天然气类型为油型气,当δ13C1<-55‰时为生物气。

参考文献(References)



[1] Zhang Shiya,Hao Jianjun,Jiang Tairan.A New Method Distinguishing Natural Gas Type with Carbon Isotopes from Methane and Ethane[M].Beijing:Geological Publishing House,1998:48-58.[张士亚,郜建军,蒋泰然.利用甲、乙烷碳同位素判识天然气类型的一种新方法[M].北京:地质出版社,1988:48-58.]

[2] Huang Jizhong.Natural gas genetic classification and its application in Sichuan Basin[J].Natural Gas Geoscience,1991,2(1):1-15.[黄籍中.油气区天然气成因分类及其在四川盆地的应用[J].天然气地球科学,1991,2(1):1-15.]

[3] Dai Jinxing.Significance of the study on carbon isotopes alkane gases[J].Natural Gas Industry,2011,31(12):1-5.[戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业,2011,31(12):1-5.]

[4] Zhao Mengjun,Xia Xinyu,Qin Shengfei,et al.Gas source of Well Ake 1 resource in Tarim Basin[J].Natural Gas Industry,2003,23(2):31-33.[赵孟军,夏新宇,秦胜飞,等.塔里木盆地阿克1井气藏气源研究[J].天然气工业,2003,23(2):31-33.]

[5] Zhang Qiucha,Wang Fuhuan,Xiao Zhongyao,et al.The discussion of natural gas source in well Ake 1[J].Natural Gas Geoscience,2003,14(6):484-487.[张秋茶,王福焕,肖中尧,等.阿克1井天然气气源讨论[J].天然气地球科学,2003,14(6):484-487.]

[6] Wang Zhaoming,Zhao Mengjun,Zhang Shuichang,et al.A preliminary study on formation of Akemomu Gasfield in the Kashi Sag,Tarim Basin[J].Chinese Journal of Geology,2005,40(2):237-247.[王招明,赵孟军,张水昌,等.塔里木盆地西部阿克莫木气田形成初探[J].地质科学,2005,40(2):237-247.]

[7] Li Xianqing,Xiao Xianming,Tang Yongchun,et al.Origin of natural gas from Ake1 gas pool using the method of carbon isotope kinetics[J].Geochimica,2005,34(5):525-531.[李贤庆,肖贤明,唐永春,等.应用碳同位素动力学方法探讨阿克1气藏天然气的来源[J].地球化学,2005,34(5):525-531.]

[8] Huang Ruchang.Formation and distribution regularity of low maturity and condensed gas pools in China[M].Beijing:Petroleum Industry Press,1997:27-28.[黄汝昌.中国低熟油及凝析气藏形成与分布规律[M].北京:石油工业出版社,1997:27-28.]

[9] Jenden P D,Drazan D J,Kaplan I R.Mixing of thermogenic natural gases in northern Appalachian basin[J].AAPG Bulletin,1993,77(6):980-998.

[10] Laughrey C D,Baldassare F J.Geochemistry and origin of some natural gases in the Plateau province of the central Appalachian basin,Pennsylvania and Ohio[J].AAPG Bulletin,1998,82(2):317-335.

[11] Burruss R C,Ryder R T.Composition of crude oil and natural gas produced from 14 wells in the Lower Silurian “Clinton” sandstone and Medina Group,northeastern Ohio and northwestern Pennsylvania[J].US Geological Survey Professional Paper 1708,2003:64.

[12] Huang Shipeng,Gong Deyu,Yu Cong,et al.Geochemical characteristics of the gases sourced from the Carboniferous-Permian coal measures:A case study of Ordos and Bohai Bay Basin,China[J].Natural Gas Geoscience,2014,25(1):98-108.[黄士鹏,龚德瑜,于聪,等.石炭系—二叠系煤成气地球化学特征——以鄂尔多斯盆地和渤海湾盆地为例[J].天然气地球科学,2014,25(1):98-108.]

[13] Yu Cong,Gong Deyu,Huang Shipeng,et al.Geochemical characteristics of carbon and hydrogen isotopes for the Xujiahe Formation natural gas in Sichuan Basin[J].Natural Gas Geoscience,2014,25(1):87-97.[于聪,龚德瑜,黄士鹏,等.四川盆地须家河组天然气碳、氢同位素特征及其指示意义[J].天然气地球科学,2014,25(1):87-97.]

[14] Song Zhenxiang,Gao Jianjun,Zhou Zhuoming.Preliminary study on genetic tyeps of natural gas in Shiwu fault depress[J].Natural Gas Geoscience,2012,23(1):167-174.[宋振响,郜建军,周卓明.十屋断陷天然气成因类型初探[J].天然气地球科学,2012,23(1):167-174.]

[15] Dai Jinxing,Xia Xinyu,Qin Shengfei,et al.Origins of partially reversed alkane δ13C values for biogenic gases in China[J].Organic Geochemistry,2004,35(4):405-411.

[16] Burruss R C,Laughrey C D.Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J].Organic Geochemistry,2010,41(12):1285-1296.

[17] Dai Jinxing,Qi Houfa,Hao Shisheng.Natural Gas Geology Introduction[M].Beijing:Petroleum Industry Press,1989:68-70.[戴金星,戚厚发,郝石生.天然气地质学概论[M].北京:石油工业出版社,1989:68-70.]

[18] Han Zhongxi,Li Jian,Yan Qituan,et al.Discussion of natural gas mercury content as an identification index of coal type gas and oil type gas[J].Natural Gas Geoscience,2013,24(1):129-133.[韩中喜,李剑,严启团,等.天然气汞含量作为煤型气和油型气判识指标的探讨[J].天然气地球科学,2013,24(1):129-133.]

[19] Meng Fanchao.Reverse sequence of natural gas carbon isotope and formation mechanism in the deep zone in Songliao Basin[J].Special Oil and Gas Reservoirs,2013,20(2):25-28.[孟凡超.松辽盆地深层天然气碳同位素反序及形成机理探讨[J].特种油气藏,2013,20(2):25-28.]

[20] Feng Zihui,Liu Wei.A study of genetic type of deep gas in Xujiaweizi fault depression[J].Natural Gas Industry,2006,26(6):18-20.[冯子辉,刘伟.徐家围子断陷深层天然气的成因类型研究[J].天然气工业,2006,26(6):18-20.]

[21] Zhang Shuichang,Zhu Guangyou.Large and medium gas fields distribution and natural gas genesis in Chinese sedimentary basins[J].Science in China Press,2007,37(supplement Ⅱ):1-11.[张水昌,朱光有.中国沉积盆地大中型气田分布与天然气成因[J].中国科学:D辑,2007,37(增刊Ⅱ):1-11.]

[22] Liu Ting,Mi Jingkui,Zhang Min.Carbon isotopic reversal numerical simulation of deep-seated gases,Songliao Basin[J].Natural Gas Geoscience,2008,19(5):722-726.[刘婷,米敬奎,张敏.松辽盆地深层天然气碳同位素倒转数值模拟[J].天然气地球科学,2008,19(5):722-726.]

[23] Wang Jianxin,Ji Bingyu,Song Jishui,et al.The development Process of Daqing Oilfield[M].Beijing:Petroleum Industry Press,2003:64-68.[王建新,计秉玉,宋吉水,等.大庆油田开发历程[M].北京:石油工业出版社,2003:64-68.]

[24] Li Hongjian,Li Shengye,Zhang Yan,et al.Deep zone geology characteristics of Shuangtuozi region in the south of Songliao Basin[J].Mud Logging Engineering,2005,16(1):56-59.[李宏建,李生业,张妍,等.浅谈松辽盆地南部双坨子地区深层地质特征[J].录井工程,2005,16(1):56-59.]

[25] Jing Chengjie,Niu Shizhong,Huang Yuxin.Geochemical characteristics of shallow gas in Honggang region,Songliao Basin[J].Petroleum Geology & Experiment,2012,34(1):53-56.[景成杰,牛世忠,黄玉欣.松辽盆地红岗地区浅层气地球化学特征研究[J].石油实验地质,2012,34(1):53-56.]

[26] Feng Songbao,Zhang Zhijun.Accumulation process and characteristics of overpressured large gasfield in Keshen belt of Kelasu tectonic zone[J].Journal of Hefei University of Technology:Natural Science,2013,36(10):1242-1248.[冯松宝,张志军.克拉苏构造带克深区带超高压大气田成藏过程与特征[J].合肥工业大学学报:自然科学版,2013,36(10):1242-1248.]

[27] Li Xinqing,Xiao Xianming,Mi Jingkui,et al.Natural gas genesis of Kela2 big gasfield in Tarim Basin[J].Natural Gas Industry,2004,24(11):8-10.[李贤庆,肖贤明,米敬奎,等.塔里木盆地克拉2大气田天然气的成因探讨[J].天然气工业,2004,24(11):8-10.]

[28] Zhu Guangyou,Yang Haijun,Zhang Bin,et al.The geological feature and origin of Dina 2 large gasfield in Kuqa Depression,Tarim Basin[J].Acta Petrologica Sinica,2012,28(8):2479-2492.[朱光有,杨海军,张斌,等.塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J].岩石学报,2012,28(8):2479-2492.]

[29] Wang Feiyu,Du Zhili,Zhang Shuichang,et al.Source kitchen and natural gas accumulation in Kuqa Depression,Tarim Basin[J].Xinjiang Petroleum Geology,2009,30(4):431-439.[王飞宇,杜治利,张水昌,等.塔里木盆地库车坳陷烃源灶特征和天然气成藏过程[J].新疆石油地质,2009,30(4):431-439.]

[30] Wan Haojie,Chen Chao,Yi Yuchuan.Distribution feature and significance of natural gas carbon isotope in platform region,Tarim Basin[J].Inner Mongolia Petrochemical,2011,(17):98-99.[万豪杰,陈超,尹玉川.塔里木盆地台盆区天然气碳同位素分布特征及其意义[J].内蒙古石油化工,2011,(17):98-99.]

[31] Tang Xiaoqiang,Yin Yuchuan,Li Xiaohui,et al.Natural gas geochemical study of the Hetianhe Gasfield in Tarim Basin[J].Geology in China,2011,38(4):1025-1030.[唐小强,尹玉川,李晓辉.等.塔里木盆地和田河气田研究[J].中国地质,2011,38(4):1025-1030.]

[32] Liu Wei,Yang Fei,Wu Jincai,et al.The discussion on natural gas source in Akmomu Gasfield,northern margin of Kashi Sag[J].Natural Gas Geoscience,2015,26(3):486-494.[刘伟,杨飞,吴金才,等.喀什凹陷北缘阿克莫木气田气源探讨[J].天然气地球科学,2015,26(3):486-494.]

[33] Zhu Guangyou,Zhang Shuichang,Liang Yingbo,et al.The characteristics of natural gas in Sichuan Basin and its sources[J].Earth Science Frontiers,2006,13(2):234-248.[朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J].地学前缘,2006,13(2):234-248.]

[34] Cao Zhenglin,Wei Zhifu,Zhang Xiaojun,et al.Oil-gas source correlation in Dongping area,Qaidam Basin[J].Lithologic Reservoirs,2013,25(3):17-42.[曹正林,魏志福,张小军,等.柴达木盆地东坪地区油气源对比分析[J].岩性油气藏,2013,25(3):17-42.]

[35] Feng Qiao,Zhang Xiaoli,Yuan Mingsheng,et al.Petroleum-entrapped system and accumulation in the Wenjiasan-Qiudong area,Tuha Basin[J].Acta Sedimentologica Sinica,1997,15(4):121-125.[冯乔,张小莉,袁明生,等.吐哈盆地温吉桑—丘东地区油气成藏体系与聚集[J].沉积学报,1997,15(4):121-125.]

[36] Li Chunguang.Discussion on the distribution and formation of the deep seated oil gas reservoir in Songliao Basin[J].Petroleum Geology and Recovery Efficiency,2004,11(3):31-34.[李春光.试论松辽盆地深层油气藏分布与形成[J].油气地质与采收率,2004,11(3):31-34.]

[37] Li Jingqiu,Miao Hongwei,Li Lili,et al.Characteristics and main controlling factors of gas accumulation in deep clastic rocks of Changling fault depression in southern Songliao Basin[J].China Petroleum Exploration,2009,14(4):34-39.[李晶秋,苗宏伟,李立立,等.松辽盆地南部长岭断陷深层碎屑岩天然气成藏特征及主控因素[J].中国石油勘探,2009,14(4):34-39.]