引用本文
Li Xinjing,Chen Gengsheng,Chen Zhiyong,et al.An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity[J].Natural Gas Geoscience,2016,27(3):407-416.[李新景,陈更生,陈志勇,等.高过成熟页岩储层演化特征与成因[J].天然气地球科学,2016,27(3):407-416.]
doi:10.11764/j.issn.1672-1926.2016.03.0407
高过成熟页岩储层演化特征与成因
中图分类号:TE122.1 文献标志码:A 文章编号:1672-1926(2016)03-0407-10
An insight into the mechanism and evolutionof shale reservoir characteristics with over-high maturity
Key words: Over-high maturity; Shale reservoirs; Solid bitumen; Properties;
引言
已知热演化过程中,有机质物理化学性质将发生改变[1]。如今伴随国内外页岩油气储层评价与勘探开发,陆续发现与成熟度有关联的新证据,如有机质孔隙、页岩气碳同位素、储层地球物理和岩石物理响应如电阻率、Thomsen参数[2-6]。以中国南方下古生界海相富有机质页岩为例,它经历了成岩作用、深成热解作用、后生作用和变质作用各阶段,热演化程度高、普遍进入干气窗是其主要特征之一。理论上,其有机物质和无机矿物遭受了较强的改造,如干酪根成为高有序化簇合体,RO>2%时镜质组表现出各向异性,天然气和固体沥青产生[7,8] ;矿物颗粒胶结、溶蚀、重结晶和交代,黏土矿物有序转化与定向排列,基质孔隙增减与形变等。但是,热演化的阶段性转变如何影响页岩气储层性质,使其显现独特性的问题,尚未得到较为系统的解释。 本文通过储层若干关键参数,将国内外案例视作完整的成熟序列组成部分,讨论热成熟度对页岩储层的储集物性、润湿性、弹性各向异性等方面产生的影响及程度,揭示高过成熟富有机质页岩储层所承载的内在变化规律,即所谓的成熟效应,理解中国南方下古生界海相页岩储层动态演化特征。
1 页岩气储集空间和碳同位素
1.1 页岩孔隙度与微观孔隙特征
常规方法、压汞法(MIP)、GRI法、数字岩心法及其他新手段均可度量页岩岩心孔隙度,但不同来源的数值难以直接比对和彼此替代,如Barnett页岩MIP结果较He孔隙度低20%~50%,汞无法进入由3.6nm以下孔喉连通的孔隙。国际上普遍认可的GRI方法,因实验室间处理程序和控制标准不统一,也会造成偏差,一般相差0.5~1.5p.u.[9]。本文筛选出国内外重点地区和层系成熟页岩储层,将 GRI方法测定的He孔隙度与有机质丰度交会,二者基本呈正相关关系(图1)。这些页岩储层孔隙度大多处于2%~10%范围,少数为10%~17%,且He孔隙度随有机质丰度的增长幅度不同,低丰度区(TOC<5%)增长显著,如Marcellus 页岩相关系数为0.82~0.86[10],但高丰度区(TOC>5%),无论成熟度或高或低,相关性普遍较差,甚至完全不相关,说明热演化阶段形成的有机质孔隙仅是页岩储层孔隙系统的重要组成部分之一,其他影响因素也应给予考虑。 首先,富有机质泥页岩岩石类型有较大差别,部分以黏土矿物、石英为主的碎屑岩,如龙马溪组、Marcellus、Barnett及Haynesville页岩,部分为含少量石英、长石、黏土矿物的碳酸盐岩,如绿河页岩、Eagle Ford页岩、Niobrara页岩以及辽河凹陷沙河街组页岩。埋藏成岩过程中,主要孔隙类型除大量有机质孔隙之外,还发育矿物基质粒间孔隙、粒内孔隙,如Eagle Ford页岩以溶蚀粒间孔缝为主,龙马溪组页岩残余粒间孔隙亦见发育(图2)。
图1 页岩有机质丰度与总孔隙度关系
Fig.1 The Correlation between organic carbon abundances(TOC)and total porosity
图2 页岩基质无机矿物粒间与粒内孔隙
Fig.2 SEM photomicrograph of intragranular and intergranular porosity in shale matrix
图3 不同成熟阶段有机物质与孔隙分布特征
Fig.3 SEM photomicrograph of organic matter and pores distribution in maturity stages
1.2 有机质孔隙类型
有机质孔隙与页岩储层的生排烃有密切关系[5-12,13],生烃增压使干酪根降解产成的油气向周边大孔隙喉道排驱,广泛充填成岩阶段页岩残余粒间孔隙,形成连续有机质网络,导致成熟致密的泥页岩孔隙中滞留了大量原位生成和近距离运移的液态烃类化合物,并在更高热演化阶段(RO>1.1%~1.3%)产生固体沥青/焦沥青[14-16],保留丰富的纳米孔隙和微裂缝,成为油气富集场所、运移和生产通道[17]。Bernard等[18,19]利用同步加速—扫描透射X-射线显微镜(STXM)手段研究未成熟、成熟和过成熟德国侏罗系Posidonia页岩,实验证实成熟和过成熟样品有机质中的确存在大分子固体沥青和焦沥青,焦沥青中散布大量海绵状粒内微孔,它们可能是演化中间产物,即残余液态烃,在热裂解过程中气体脱溶的结果。虽然这里统称固体沥青或焦沥青,实际上从低成熟阶段(RO=0.35%~0.60%)开始,固体沥青有诸多地质成因类型,分类上也有很大的争议,本文暂且关注与液态烃有关的后油固体沥青(Post-oil solid bitumen),它有别于干酪根及其表面吸附的沥青[17]。正如前所述,后油固体沥青来源于生油阶段产生的液态烃,是源内充注、运移、更深入的热蚀变产生的结果,其面貌通常是无定形的,形态取决于所占据的孔隙空间[14-17-20,21]。至于高过成熟阶段,岩石总孔隙体积、孔隙尺度分布和微孔、中孔、大孔相对比例是否因此发生变化或逆转,未来还仍需大量研究工作。过去之所以忽视了这部分固体沥青的贡献,主要原因是这类次生孔隙在源储共生的页岩储层中不易识别,即使当今拥有STXM手段,实践中广泛应用依然不现实。本文试图结合SEM背散射图像中固体沥青形貌特征、成岩演化与油气充注时间序列,例举实例,加以甄别。 图2和图3鄂尔多斯盆地长7页岩、Eagle Ford页岩、Barnett页岩、Woodford页岩和龙马溪组页岩中可见断续分布、鲜有贯穿整个视域的狭长形高渗透性粒间孔缝,被沥青充填,海绵状纳米级孔隙分布部分区域[图2(a),图2(e),图3(a),图3(b),图3(g),图3(h)]。图4(a)热解实验证实,350℃加热4d后Woodford页岩产生 的油滴自基质中渗出,向高渗透性的微缝方向运移[22];Barnett页岩生物成因硅质颗粒发生广泛重结晶[9],Passey[9]认为黑色部分是有机质孔隙,本文认为应是重结晶之后充注的油气,在更高演化阶段裂解形成固体沥青/焦沥青孔隙[图4(b)];Eagle Ford页岩有孔虫生物体腔内碳酸盐胶结物、黄铁矿和碳酸盐自形晶形成后,残余孔隙充填了沥青,同时矿物基质中也发育粒间、粒内溶蚀孔隙,并为沥青充填[图4(c)];彭水地区志留系龙马溪组黑色页岩,埋深为2 149.72m、成熟度为2.84%,有机质丰度为3.98%、孔隙度为4.74%[11], 粒间孔隙内见碳酸盐自形晶体,黑色部分实为固体
图4 固体沥青和焦沥青与孔隙SEM图像及薄片特征
Fig.4 SEM and thin section photomicrograph of the pores inside solid bitumen and pyrobitumen
1.3 页岩气碳同位素反转
高产的成熟页岩气储层中常观察到甲烷、乙烷和丙烷碳同位素异常反转现象, 如Barnett页岩、Marcellus页岩、龙马溪组页岩、Horn River页岩、Utica页岩、Woodford页岩及Haynesville页岩等, 说明同位素地球化学异常具有普遍性(图5)。其原因是,封闭生烃体系中,不同先驱物(干酪根、残余油和湿气裂解)产生的天然气源内混合聚集[23],即成熟阶段早期干酪根降解,乙烷和丙烷同位素同步升高,RO >1.5%时,干酪根裂解和残余油裂解同期发生,同位素分馏作用导致轻碳同位素相对富集,乙烷和丙烷碳同位素反转。这一现象曾被用来定性预测Barnett、Haynesville井的页岩储层渗透性和天然气产量[24]。Hao等[25]进一步指出,油气生成高峰阶段,封闭系统中相对较低的排烃效率和后期较低损失量,导致了同位素反转异常现象。
图5 页岩气碳同位素热演化轨迹(改自文献[23-27,29])
Fig.5 Carbon isotopic variation of shale gas across the path of thermal maturity(modifed from Ref.[23-27,29])
2 页岩储层演化特征
2.1 页岩储层电阻率
未成熟页岩,因黏土矿物附加的导电性和孔隙水导电性,表现为低电阻率;成熟度升高,油相驱替孔隙水,孔—缝饱含油相,电阻率升高。Schmoker等[30]正是借助二者相关性,以电阻率>35
Ω·m为界限,预测了Woodford、Bakken页岩开始大量成熟生油的分布范围。加拿大Saskatchewan东南部,靠近Trans Hudson造山带附近Nesson背斜北侧和西侧,由于受到与基底构造相关的Brockton-Froid-Fromberg北东向延伸的断层带局部高热流值以及区域应力的影响,Bakken上段和下段页岩高电阻率异常(>25 000Ω·m),也遵循上述原理[31]。
但Passey等[9]发现,一些高过成熟富有机质页岩(RO>3%)电阻率,相较于低成熟页岩(1%
Table 1 Resistivity of shale reservoirs during thermal maturation
目的层 Niobrara页岩[32] Bakken页岩[31] Woodford页岩[30] 龙马溪组页岩 盆地 Sand Wash Piceance Williston Anadarko/Arkoma 四川 未熟阶段Rt/(Ω·m) <10 / 7~9 20~35 / 生油阶段Rt(Ω·m) 早期<20,晚期40~60 10~16 >35 >35 / 湿气阶段Rt(Ω·m) 90~120(>70) >30 25 000(max) 100~500,>1 000(max) / 干气阶段Rt(Ω·m) 40~50 18~22 / 10~15(浅井) 25~140,200(max)
2.2 页岩储层各向异性
与砂岩和碳酸盐岩相比,富有机质页岩各向异性普遍强烈,计算岩层杨氏模量、泊松比等弹性参数,判断页岩储层可压性或者脆性时,必须考虑储层各项异性特征。目前,叠加有机质丰度和成熟度双重因素的实验数据比较有限,Thomsen各向异性参数的变化规律不十分明确,特别是高演化阶段。Vanorio等[35]富有机质页岩应力敏感实验很值得借鉴,它展示了2个明显特征[图6(a)]: ①不同成熟区间,页岩各向异性参数的应力响应不同。低成熟阶段(RO<0.65%),反映纵波各向异性的Thomsen参数ε随成熟度升高而单调递增,应力敏感性较弱,成熟度是主要的控制因素。生烃高峰之后,当应力由5MPa增至50MPa时,ε整体降低,应力也成为主要影响因素;②生油(RO=0.65%)和生气高峰(RO=1.3%)附近,ε发生反转,各向异性强弱表现出非线性变化。本文将其与Deng等 [36]实验测试数据结合,利用上扬子地区五峰组—龙马溪组黑色页岩50MPa围压条件下的参数值,结合其样品地处的区域热成熟度水平,代表高过成熟阶段(RO>2.0%)页岩储层各向异性的响应特征,观察完整成熟序列的岩石物理属性变化。图中显示,除个别高值点(黏土含量较高约为40%),ε参数整体仍延续略有下降趋势的波动,RO值约为2.0%附近时,ε参数值变化幅度较大,可能与扬子地区龙马溪组页岩样品黏土含量差异较大有关,说明在整个热演化序列中,有机质的物理、化学结构特征发生非线性变化,同时也不能忽略其他主要控制因素。 图6(b)、图6(c)高过成熟龙马溪组页岩黏土矿物含量与纵横波各向异性参数ε和γ显示较强的相关关系,黏土矿物<30%时,ε随黏土含量增加而缓慢提高,黏土矿物>30%时,各向异性加速上升,而且与Haynesville、Barnett、Eagle Ford等页岩总体变化趋势较吻合[36,37]。Qin等[38]以成熟期Bakken页岩为例,通过设置假设条件和数学模型,计算有机质丰度和成熟程度对岩石物理弹性参数如声波速度、纵横波速比和各向异性的影响。结果说明,各向异性参数值伴随有机质丰度和成熟度提高而增大;页岩有机质丰度较高时(VTOC>25%),成熟度增加,储层Vp/Vs值降低,各向异性大幅增强;有机质丰度相对较低时(VTOC<25%),TOC大小主要控制了页岩各向异性参数ε强弱,此时富有机质页岩沉积环境、物源供给可能强烈地约束了ε原始背景值。 从理论上讲,有机质—黏土矿物絮凝物沉积于较弱
图6 Thomsen参数ε与页岩成熟度关系(a),页岩黏土含量与Thomsen参数ε和γ交会图(b)、(c)
Fig.6 Thomson parameter ε variation across thermal maturity(a),Plots of Thomson parameters(ε,γ)versus the clay content(b)、(c)
3 结论
(1)页岩有机质孔隙包括干酪根孔隙、固体沥青/焦沥青孔隙,通过岩石矿物学特征和成岩作用研究,有助于其识别,获取有关页岩孔隙,包括微裂缝的成因和形成时期方面信息。矿物基质孔隙、微裂缝与有机质孔隙是一个有机整体,不是彼此完全孤立的。有机质显微组成、热成熟度以及源内流体运移通道共同制约了页岩有机质孔隙分布规模和演化特征,影响有机质丰度与储层孔隙度的相关性。 (2)与北美多数页岩油气储层相比,高过成熟是我国南方下古生界海相富有机质页岩储层的重要特征之一。在其热演化路径上,原油、湿气裂解为热稳定产物甲烷的反应逐步占据主导地位,形成大量固体沥青孔隙,页岩气碳同位素进入完全反转区,孔隙表面经历了水润湿—油润湿—水润湿的动态转变,储层电阻率发生先上升后下降的逆转现象,岩石各向异性参数亦非线性波动,显示出中国南方下古生界高过成熟页岩储层可能的演化特征,说明二者之间存在本质上的联系和变化规律,不能简单认为高过成熟度就是制约我国南方下古生界页岩气勘探开发获得突破性进展的主导因素,复杂地质背景才是关键,应从含油气系统和古今应力场等方面进一步厘定。勘探开发实践已证实这一点,四川盆地龙马溪页岩便是典型代表。
致谢:感谢德克萨斯州奥斯汀分校协助提供Eagle Ford和Barnett样品、Jack Breig关于富有机质页岩润湿性以及开采潜力等方面的独到见解和交流!
参考文献(References)
[1] Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].Xu Yongyuan,Xu Qian,Hao Shisheng,translated.Beijing:Petroleum Industry Press,1984:1-463[蒂索B P,威尔特D H.石油形成与分布[M] .徐永远,徐谦,郝石生译.北京:石油工业出版社,1989:1-357.]
[2] Cao Chunhui,Zhang Mingjie,Tang Qingyan,et al.Geochemical characteristics and implications of shale gas Longmaxi Formation,Sichuan Basin,China[J].Natural Gas Geoscience,2015,26(8):1604-1612.[曹春辉,张铭杰,汤庆艳,等.四川盆地志留系龙马溪组页岩气体地球化学特征及意义[J].天然气地球科学,2015,26(8):1604 -1612.]
[3] Qu Zhenya,Sun Jianan,Shi Jianting,et al.Characteristics of stable carbon iosotopic composition of shale gas[J].Natural Gas Geoscience,2015,26(7):1376-1384.[屈振亚,孙佳楠,史健婷,等.页岩气稳定碳同位素特征研究[J].天然气地球科学,2015,26(7):1376-1384.]
[4] Li Xinjing.Characteristics of Shale Gas Reservoirs for High Maturity in Sichuan Basin[D].Beijing:Research Institute of Exploration and Development,Petrochina,2010:1-79.[李新景.四川盆地高成熟海相含气页岩储层特征研究[D].北京:中国石油勘探开发研究院博士后工作报告,2010:1-79.]
[5] Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26 -31.
[6] Kethireddy N,Chen H,Heidari Z.Quantifying the effect of kerogen on resistivity measurements in organic-rich rocks[J].Petrophysics,2014,55(3):136-146.
[7] Durand B,Nicaise G.Procedures for kerogen isolation[C]//Durand B.Kerogen-insoluble organic matter from sedimentary rocks.Paris:Technip,1980:35-53.
[8] Fu Jiamo,Wang Benshan,Shi Jiyang,et al.Evolution of organic matter and origin of sedimentary ore deposites[J].Acta Sedimentological Sinica,1983,1(3):41-58.[傅家谟,汪本善,史继扬,等.有机质演化与沉积矿床成因[J].沉积学报,1983,1(3):41-58.]
[9] Passey Q R,Bohacs K,Esch W L,et al.From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//International Oil and Gas Conference and Exhibition in China.Texas:Society of Petroleum Engineers,2010.
[10] Milliken K L,Rudnicki M,Awwiller D N,et al.Organic matter-hosted pore system,Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
[11] Tian H,Pan L,Xiao X,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N 2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
[12] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J].AAPG Bulletin,2007,90(4):475-499.
[13] Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[14] Fishman N,Guthrie J M,Honarpour M.Development of organic and inorganic porosity in the Cretaceous Eagle Ford Formation,South Texas[J].Search and Discovery,2014,50928.
[15] Hackley P C.Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation,Maverick Basin,south Texas:A future shale gas resource[J].AAPG Bulletin,2012,96(8):1449-1482.
[16] Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
[17] Cardott B J,Landis C R,Curtis M E.Post-oil solid bitumen network in the Woodford shale,USA:A potential primary migration pathway[J].International Journal of Coal Geology,2015,139:106-113.
[18] Bernard S,Horsfield B,Schulz H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:A STXM and TEM study of the Posidonia Shale(Lower Toarcian,northern Germany)[J].Marine and Petroleum Geology,2012,31(1):70-89.
[19] Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J].International Journal of Coal Geology,2012,103:3-11.
[20] Jacob H.Classification,structure,genesis and practical importance of natural solid oil bitumen(“migrabitumen”)[J].International Journal of Coal Geology,1989,11(1):65-79.
[21] Curiale J A.Origin of solid bitumens,with emphasis on biological marker results[J].Organic Geochemistry,1986,10(1-3):559-580.
[22] Slatt R M,Philp P R,Abousleiman Y,et al.Pore-to-regional-scale integrated characterization workflow for unconventional gas shales[C]//Breyer J A.Shale reservoirs-Giant resources for the 21st century.Oklahoma:American Association of Petroleum Geologists,2012:127-150.
[23] Tilley B,Muehlenbachs K.Isotope reversals and universal stages and trends of gas maturation in sealed,self-contained petroleum systems[J].Chemical Geology,2013,339:194-204.
[24] Zumberge J E,Ferworn K A,Curtis J B.Gas character anomalies found in highly productive shale gas wells[J].Geochimica et Cosmochimica Acta Supplement,2009,73:1539-1556.
[25] Hao F,Zou H.Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J].Marine and Petroleum Geology,2013,44:1-12.
[26] Zumberge J,Ferworn K,Brown S.Isotopic reversal(‘rollover’)in shale gases produced from the Mississippian Barnett and Fayetteville Formations[J].Marine and Petroleum Geology,2012,31(1):43-52.
[27] Dai J,Zou C,Liao S,et al.Geochemistry of the extremely high thermal maturity Longmaxi shale gas,southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
[28] Burruss R C,Laughrey C D.Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J].Organic Geochemistry,2010,41(12):1285-1296.
[29] Xia X,Chen J,Braun R,et al.Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J].Chemical Geology,2013,339:205-212.
[30] Schmoker J W,Hester T C.Formation resistivity as an indicator of the onset of oil generation in the Woodford Shale,Anadarko Basin,Oklahoma[C]//Johnson K S.Anadarko basin symposium.Oklahoma:Oklahoma Geological Survey,1989:262-266.
[31] Kreis L K,Costa A.Hydrocarbon potential of the Bakken and Torquay formations,southeastern Saskatchewan[C]//Saskatchewan Industry Resources.Saskatchewan:Saskatchewan Geological Survey,2006:118-137.
[32] Al Duhailan M A,Cumella S.Niobrara Maturity Goes Up,Resistivity Goes Down;What’s Going On[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference.Texas:Society of Petroleum Engineers,2014.
[33] Cumella S,Scheevel J.Mesaverde tight gas sandstone sourcing from underlying Mancos-Niobrara Shales[J].Search and Discovery,2012,10450.
[34] Newsham K E,Rushing J A,Chaouche A,et al.Laboratory and Field Observations of an Apparent Sub Capillary-Equilibrium Water Saturation Distribution in a Tight Gas Sand Reservoir[C]// SPE Gas Technology Symposium.Texas:Society of Petroleum Engineers,2002,75710:5-8.
[35] Vanorio T,Mukerji T,Mavko G.Emerging methodologies to characterize the rock physics properties of organic-rich shales[J].The Leading Edge,2008,27(6):780-787.
[36] Deng J,Tang G,Yan P.Microtexture,seismic rock physical properties and modeling of Longmaxi Formation shale[J].Chinese Journal of Geophysics-Chines Edition,2015,58(6):2123-2136.
[37] Sone H.Mechanical Properties of Shale Gas Reservoir Rock and Its Relation to the In-situ Stress Variation Observed in Shale Gas Reservoir[D].California:Stanford University,2012:1-247.
[38] Qin X,Han D,Zhao L.Rock physics modeling of organic-rich shales with different maturity levels[C]//2014 SEG Annual Meeting.Oklahoma:Society of Exploration Geophysicists,2014.