引用本文

Zhang Chong,Zhang Chaomo,Zhang Zhansong,et al.Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J].Natural Gas Geoscience,2016,27(2):352-358.[张冲,张超谟,张占松,等.致密气储层岩心束缚水饱和度实验对比[J].天然气地球科学,2016,27(2):352-358.]
doi:10.11764/j.issn.1672-1926.2016.02.0352

致密气储层岩心束缚水饱和度实验对比

张冲1,2 ,张超谟1,2,张占松1,2,秦瑞宝3,余杰3 

摘要  
束缚水饱和度是进行储层油气评价、产能预测及储量计算的关键参数,现有的确定岩心束缚水饱和度的实验标准不适合于致密气储层岩样。选取大量具有代表性的致密砂岩岩样,进行了半渗透隔板、核磁共振及压汞实验测量,并对这3种实验确定束缚水饱和度的方法进行了对比研究。研究认为:选用阈压值为1.5MPa的隔板进行半渗透隔板毛细管压力曲线测量,并不能准确获取岩心束缚水饱和度,隔板阈压值需要达到3MPa;致密砂岩岩样在离心机上用0.690MPa离心力甩出的自由水并不充分,最佳离心力应为1.379MPa,结合核磁共振饱和T2谱与1.379MPa离心力下测量的离心T2谱可以有效地确定致密岩样的束缚水饱和度;半渗透隔板毛细管压力曲线与压汞毛细管压力曲线在形态上存在差异,压汞法采用毛细管压力为1.379MPa(转换为气—水系统)时所对应的束缚水饱和度更为可靠。

关键词 半渗透隔板       核磁共振       压汞       束缚水饱和度       致密气储层      

中图分类号:TE155      文献标志码:A      文章编号:1672-1926(2016)02-0352-07

Comparative experimental study of the core irreducible water saturation of tight gas reservoir

Zhang Chong1,2 ,Zhang Chao-mo1,2,Zhang Zhan-song1,2,Qin Rui-bao3,Yu Jie3 

Abstract  
The irreducible water saturation is the key parameter of oil and gas reservoir evaluation,productivity prediction and the calculation of reserves.The existent experimental standard of the core irreducible water saturation is not suitable for rock samples of tight gas reservoir.A large number of representative tight sandstone samples were selected for semi permeable diaphragm experiment,NMR experiment and mercury injection experiment.After making a comparative study of these three methods,some conclusions were made.If the plate whose pressure threshold value is 1.5MPa is selected to get the capillary pressure curves,the accurate core irreducible water saturation cannot be obtained.The appropriate pressure threshold value needs to reach 3MPa.The best centrifugal force for getting free water of the tight sandstone samples is 1.379MPa instead of 0.690MPa.Combing T2 distribution in 1.379MPa centrifugal force condition and T2 distribution of saturation NMR,the irreducible water saturation of tight rock samples can be effectively determined.The semi-permeable plate capillary pressure curves are different with mercury injection capillary pressure curves in the shape of curve.When the capillary pressure is 1.379MPa,mercury intrusion method can get more reliable irreducible water saturation.The above research results have reference significance for the revision of the industry standard of petroleum and natural gas industry in China.

Key words Semi-permeable plate;       Nuclear magnetic resonance (NMR);       Mercury injection;       Irreducible water saturation;       Tight gas reservoir ;      

引言

目前致密砂岩气藏已经成为全球非常规天然气勘探的重点领域[1-8],致密气藏是指储层须经过大型水力压裂或采用水平井或多分支井技术等措施才能获得经济产量、绝对渗透率一般小于1×10-3μm2的烃源岩外气藏[9,10]。与常规储层相比,致密气储层具有非均值性强、孔隙结构复杂、孔隙连通性差等特点,且致密气储层主要以纳米尺度的孔—喉连通体系为主[11-13]。 束缚水饱和度是进行致密气储层油气评价、产能预测及储量计算的关键参数。目前,实验确定束缚水饱和度的方法有半渗透隔板法、压汞法及核磁共振法等[14-21],这些实验方法的行业标准多是针对常规储层制定,对于更为复杂的致密气储层,实验确定的结果往往会导致较大的误差。基于此,笔者选取大量具有代表性的致密气储层砂岩岩样,设计不同标准的半渗透隔板、核磁共振及压汞实验并进行对比研究,以期遴选出能准确确定致密岩样束缚水饱和度的实验方法。

1 半渗透隔板法

半渗透隔板法获取束缚水饱和度的基本原理是:将饱含地层水的岩样放在隔板上,利用注加湿氮气方法在岩样两端建立驱替压差,驱替过程中毛细管压力(等于将水从岩样孔隙中驱替出来所需的压力)平衡时可以得到岩样中相应的含水饱和度,用一系列毛细管压力和含水饱和度值作图就可以得到半渗透隔板法毛细管压力曲线,其中,半渗透隔板所能测定的最大毛细管压力对应得到的含水饱和度即为测量束缚水饱和度。 半渗透隔板所能测定的最大毛细管压力主要取决于隔板的半渗透性,即隔板的阈压值。隔板的孔隙越小,阈压值越高,测试范围就越大,同时测量的时间也越长。按目前中华人民共和国石油天然气行业标准(SY/T 5346-2005)[22],隔板法设定的阈压值为1.5MPa,这种标准是针对常规砂岩储层岩样制定的,对于致密岩样并不一定适用。按照邹才能等[10]制定的烃类储集空间孔隙标准(图1),致密砂岩的孔喉下限为50nm,即需要克服的最大毛细管压力为Pc=2σcosθ/r=2×72×0.001/0.05μm=2.88MPa,远超过目前标准的阈压值1.5MPa。因此,为了考察最合适于致密砂岩的阈压值,以获取准确的束缚水饱和度,本文研究利用Autopore Ⅳ9505孔隙结构测定仪,设计了2组实验,一组是采用阈压值为1.5MPa的冲压烧结陶瓷隔板进行半渗透隔板实验测量;另一组采用阈压值为3MPa的冲压烧结紫砂隔板进行测量。

图1     油气聚集孔喉结构模式[10]
Fig.1     Pore-throat structure mode of petroleum accumulation[10]

实验岩样选自鄂尔多斯盆地某区块二叠系致密气储层,岩样形状为柱塞状,直径为2.54cm,长为5cm,且1~10号岩样与11~20号岩样孔渗基本一致,均为典型的致密砂岩岩样,实验采取气驱水的方式,模拟水的水型和矿化度按实际地层设定(表1)。图2(a)为1~10号样测量的半渗透隔板毛细管压力曲线,采取的阈压值为1.5MPa,图2(b)为11~20号样测量的半渗透隔板毛细管压力曲线,采取的阈压值为3MPa。从这2组实验结果的对比可以看出:阈压值为3MPa的10条毛细管压力曲线更符合气藏真实情况,当毛细管压力增加到一定值时,其含水饱和度值趋于不变,而阈压值为1.5MPa的10条毛细管压力曲线呈现出随毛细管压力增加而含水饱和度一直减小的趋势。图2(b)确定的束缚水饱和度在32.7%~63.5%之间,而图2(a)确定的束缚水饱和度在53.56%~89.36%之间,阈压值为1.5MPa的半渗透隔板法确定的束缚水饱和度明显偏大。 因此,选用阈压值为3MPa的隔板进行半渗透隔板毛细管压力曲线测量(每测定一个压力点平衡时间应不少于72h),可以准确获取致密砂岩岩样的束缚水饱和度,且半渗透隔板法所用仪器简单,该方法采用空气驱替润湿相盐水,其中黏土束缚水不能被驱替,其测量得到的毛细管压力曲线反映了除黏土束缚水部分之外的孔隙结构,是一种经典的、标准的方法,可以作为压汞法等其他测量方法的对比标准。

2 核磁共振法

岩心核磁共振实验确定束缚水饱和度的方法[23]是:先对饱和水的岩心进行核磁共振测量,得到横向弛豫时间T2分布谱(饱和T2谱),然后在离心力0.690MPa下将饱和水的岩心在离心机上甩出其中的自由水,只剩下束缚水后,再对岩心进行核磁共振测量得到离心后的横向弛豫时间T2分布谱(离心T2谱),结合饱和T2谱和离心T2谱得到T2截止值之后,将饱和T2谱中小于T2截止值的不可动峰包络面积除以整个T2谱下包络面积就等于核磁束缚水饱和度。 离心力0.690MPa下致密砂岩岩样在离心机上甩出的自由水并不充分[24-27],李海波[28]选取了一定数量有代表性的致密砂岩,对每块岩样均进行了0.345MPa、0.690MPa、1.034MPa、1.379MPa、1.724MPa及2.069MPa等6个不同离心力离心后的核磁共振测量(等待时间TW=5s,回波间隔TE=0.2ms),得出致密砂岩岩样最佳离心力为1.379MPa的结论(图3),即离心力为1.379MPa下测量的核磁束缚水更接近实际致密砂岩岩样束缚水。

表1     岩样基本参数及半渗透隔板法确定的束缚水饱和度
Table 1     The basic parameters of cores and the irreducible water saturation by the high pressure semi permeable membrane method
岩样编号岩性孔隙度/%渗透率/(×10-3μm2)模拟水型模拟气水矿化度/(g/L)束缚水饱和度/%
No.1岩屑石英砂岩8.5000.4475%CaCl2N246.28053.560
No.2岩屑石英砂岩6.3000.1385%CaCl2N246.28070.840
No.3岩屑砂岩6.6000.0855%CaCl2N246.28087.200
No.4岩屑砂岩9.5000.2265%CaCl2N246.28078.360
No.5岩屑石英砂岩9.4000.8465%CaCl2N246.28069.540
No.6岩屑砂岩4.0000.0995%CaCl2N246.28083.220
No.7岩屑石英砂岩8.8000.3155%CaCl2N246.28079.380
No.8岩屑砂岩5.1000.1575%CaCl2N246.28082.500
No.9岩屑砂岩12.1000.3705%CaCl2N246.28071.910
No.10岩屑石英砂岩10.8000.6825%CaCl2N246.28089.360
No.11岩屑砂岩8.4100.2905%CaCl2N246.28040.300
No.12岩屑石英砂岩6.4300.6605%CaCl2N246.28057.300
No.13岩屑石英砂岩8.1200.7905%CaCl2N246.28039.100
No.14岩屑砂岩9.2400.1745%CaCl2N246.28042.900
No.15岩屑砂岩6.8800.1485%CaCl2N246.28047.900
No.16岩屑砂岩7.3800.3675%CaCl2N246.28032.700
No.17岩屑砂岩4.4700.1685%CaCl2N246.28063.500
No.18岩屑石英砂岩8.1700.3115%CaCl2N246.28034.200
No.19岩屑石英砂岩7.1500.4585%CaCl2N246.28036.500
No.20岩屑石英砂岩9.7600.6935%CaCl2N246.28038.600

图2     半渗透隔板毛细管压力曲线
Fig.2     Capillary pressure curve obtained with the high pressure semi permeable membrane method

选取了11号岩样和14号岩样,利用MRAIN-7型核磁仪器进行了核磁共振实验测量,离心力采用1.379MPa,TW=5s,TE=0.2ms(图4)。将2块致密砂岩岩样核磁测量的束缚水饱和度与半渗透隔板束缚水饱和度相比较(表2),绝对误差分别为1.09%和1.44%。两者比较接近,小于储量计算规定的饱和度绝对误差5%的下限,即在离心力为1.379MPa下核磁共振实验确定的致密砂岩岩样束缚水是可靠的。

3 压汞法

恒压压汞法是以汞作为驱替流体的一种测量毛细管压力曲线的常规方法,其确定束缚水饱和度的常用做法[29]是:当岩样受离心力作用使得岩石所受的毛细管压力达到0.690MPa(转换为气—水系统)时,岩样剩下的水即为束缚水。显然,根据以上认识,对于致密砂岩岩样,当毛细管压力达到1.379MPa时,岩样剩下的水才为束缚水。 为了考察压汞法确定束缚水饱和度的准确性,本文研究选取了3块致密砂岩岩样,岩样形状为柱塞状,直径为2.54cm,长为5cm,先后进行了半渗透隔板(阈压值:3MPa)和压汞实验测量,实验结果如图5所示。从图5中可以明显看出:压汞与半渗透隔板毛细管压力曲线在形态上有明显差异,造成这种差异的原因主要有2个方面:①压汞与半渗透隔板毛细管压力曲线在反映泥质砂岩孔隙空间黏土束缚水体积部分存在差异,半渗透隔板毛细管压力曲线反映除黏土束缚水部分以外的孔隙结构,与实际气藏情况相符,而压汞毛细管压力曲线反映整个孔隙空间的孔隙结构;②压汞法是在真空条件下将汞压入岩样,汞是一种界面张力很大、压缩性微弱的流体,而气藏是气驱水的过程。

图3     最佳离心力标定(岩样Φ=5.28%,K=0.217×10-3μm2)[28]
Fig.3     The best centrifugal force calibration of tight sandstone cores[28]

图4     致密砂岩岩样核磁共振实验T2谱(离心谱的离心力:1.379MPa)
Fig.4     NMR T2 distribution spectrum of tight sandstone cores

表2     核磁共振法与半渗透隔板法确定的束缚水饱和度对比
Table 2     Methods comparison of the irreducible water saturation by the high pressure semi permeable membrane method and NMR
岩样编号岩性孔隙度/%渗透率/(×10-3μm2)半渗透隔板束缚水饱和度/%核磁束缚水饱和度/%
No.11岩屑砂岩8.4100.29040.341.39
No.14岩屑砂岩9.2400.17442.944.34
将3块岩样分别用压汞和半渗透隔板法确定的束缚水饱和度进行对比(表3)。从表3可以看出:0.690MPa确定的压汞束缚水饱和度明显比半渗透隔板法确定的束缚水饱和度要大,3块岩样的绝对误差分别为10.34%、17.17%及5.99%;1.379MPa确定的束缚水饱和度与隔板法束缚水饱和度更接近,3块岩样的绝对误差分别为2.80%、2.53%及1.83%,均小于储量计算规定的饱和度绝对误差小于5%的下限,即采用毛细管压力为1.379MPa时所对应的束缚水饱和度更为可靠。

图5     压汞与半渗透隔板毛细管压力曲线对比
Fig.5     The capillary pressure curve comparison by mercury injection method and the high pressure semi permeable membrane method

表3     压汞法与半渗透隔板法确定的束缚水饱和度对比
Table 3     Methods comparison of the irreducible water saturation by the high pressure semi permeable membrane method and mercury injection method
岩样 编号岩性孔隙度 /%渗透率 /(×10-3μm2)0.690MPa时 压汞法束缚水 饱和度/%1.379MPa时 压汞法束缚水 饱和度/%半渗透隔板法 束缚水饱和度 /%
No.13岩屑石英砂岩8.120.7949.4436.339.1
No.21岩屑石英砂岩11.393.7250.2735.63133.1
No.22岩屑石英砂岩16.51.1335.0927.27529.1
由于半渗透隔板法对隔板的要求非常高,而且测试时间长,常常难以满足矿场测试的需要,因此,油田通常大量进行压汞实验,在缺乏大量半渗透隔板实验数据的情况下,可以用毛细管压力为1.379MPa时所对应的压汞束缚水饱和度替代。

4 结论

(1)隔板阈压值为1.5MPa的半渗透隔板法不能准确获取致密砂岩岩样的束缚水饱和度,应选用阈压值为3MPa的隔板;致密砂岩岩样半渗透隔板毛细管压力曲线与压汞毛细管压力曲线在形态上存在差异,在缺乏半渗透隔板实验数据的情况下,可以用毛细管压力为1.379MPa时所对应的压汞束缚水饱和度替代。 (2)结合核磁共振饱和T2谱与1.379MPa离心力下测量的离心T2谱可以有效确定致密岩样的束缚水饱和度。

参考文献(References)



[1] National Energy Bureau.SYT 6832-2011 Geological Evaluating Methods for Tight Sandstone Gas[S].Beijing:Petroleum Industry Press,2011.[国家能源局.SY/T 6832-2011致密砂岩气地质评价方法[S].北京:石油工业出版社,2011.]

[2] Qiu Zhongjian,Deng Songtao.Strategic position of unconventional natural gas resources in China[J].Natural Gas Industry,2012,32(1):1-5.[邱中建,邓松涛.中国非常规天然气的战略地位[J].天然气工业,2012,32(1):1-5.]

[3] Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312-322.[邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322.]

[4] Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon in China and prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.[贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.]

[5] Qiu Zhongjian,Zhao Wenzhi,Deng Songtao.Roadmap for tight and shale gas[J].China Petrochem,2012,17(Special):18-21.[邱中建,赵文智,邓松涛.致密气与页岩气发展路线图[J].中国石油石化,2012,17(特稿):18-21.]

[6] Hu Wenrui.Development of unconventional natural gas:The best approach to low-carbon economy and resource efficiency[J].Natural Gas Industry,2010,30(9):1-8.[胡文瑞.开发非常规天然气是利用低碳资源的现实最佳选择[J].天然气工业,2010,30(9):1-8.]

[7] Yang Tao,Zhang Guosheng,Liang Kun,et al.The exploration of global tight sandstone gas and forecast of the development tendency in China[J].Engineering Sciences,2012,14(6):64-68.[杨涛,张国生,梁坤,等.全球致密气勘探开发进展及中国发展趋势预测[J].中国工程科学,2012,14(6):64-68.]

[8] Tian Wei,Zhu Weiyao,Zhu Huayin,et al.The micro-structure and seepage characteristics of condensate gas reservoir for tight sandstone [J].Natural Gas Geoscience,2014,25(7):1077-1084.[田巍,朱维耀,朱华银,等.致密砂岩凝析气藏微观结构及渗流特征[J].天然气地球科学,2014,25(7):1077-1084.]

[9] Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocarbons[J].Natural Gas Geoscience,2012,23(3):393-404.[赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-404.]

[10] Zou Caineng,Zhu Rukai,Wu Songtao,et al.Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33 (2):173-187.[邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33 (2):173-187.]

[11] Yang Hua,Fu Jinhua,Liu Xinshe,et al.Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J].Petroleum Exploration and Development,2012,39(3):295-303.[杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295-303.]

[12] Zou Caineng,Yang Zhi,Tao Shizhen,et al.Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J].Petroleum Exploration and Development,2012,39(1):13-26.[邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-26.]

[13] Zou C N,Zhu R K,Liu K Y.Tight gas sandstone reservoirs in China:Characteristics and recognition criteria[J].Journal of Petroleum Science and Engineering,2012,88(6):88-89,82-91.

[14] Sun Jianmeng,Cheng Fang,Zhang Zhongqing.Application of core electric experimental measurement to determination of irreducible water saturation[J].Journal of China University of Petroleum:Edition of Natural Science,1997,21(1):22-23.[孙建孟,程芳,张忠青.应用岩电实验资料确定束缚水饱和度[J].中国石油大学学报:自然科学版,1997,21(1):22-23.]

[15] Zhou Yu,Guo Hekun,Wei Guoqi,et al.Irreducible water saturation measurement of volcanic rocks using nuclear magnetic resonance[J].Science & Technology Review,2011,29(5):24-27.[周宇,郭河坤,魏国齐.等.火山岩束缚水饱和度核磁共振测量方法[J].科技导报,2011,29(5):24-27.]

[16] Zhang Chong,Mao Zhiqiang,Jin Yan.Experimental studies of NMR logging irreducible water saturation[J].Nuclear Electronics & Detection Technology,2010,30(4):514-517.[张冲,毛志强,金燕.基于实验室条件下的核磁共振测井束缚水饱和度计算方法研究[J].核电子学与探测技术,2010,30(4):514-517.]

[17] Li Ning,Zhou Keming,Zhang Qingxiu,et al.Experimental research on irreducible water saturation[J].Natural Gas Industry,2002,22(supplement):110-113.[李宁,周克明,张清秀,等.束缚水饱和度实验研究[J].天然气工业,2002,22(增刊):110-113.]

[18] Wang Xiaochang,Fan Yiren,Deng Shaogui,et al.Irreducible water saturation determination based on centrifugal test data[J].Journal of China University of Petroleum:Edition of Natural Science,2009,33(3):76-79.[王晓畅,范宜仁,邓少贵,等.基于离心试验数据确定束缚水饱和度[J].中国石油大学学报:自然科学版,2009,33(3):76-79.]

[19] Xian Deqing,Fu Shaoqing,Xie Ranhong.Study on NMR logging bulk volume of irreducible water mode[J].Nuclear Electronics & Detection Technology,2007,27(3):578-582.[鲜德清,傅少庆,谢然红.核磁共振测井束缚水模型研究[J].核电子学与探测技术,2007,27(3):578-582.]

[20] Chen Kegui,Wen Yina,He Taihong,et al.Irreducible water saturation models of tight sandstone gas reservoirs with low porosity and permeability and its application-taking a block of Shanxi Formation tight sandstone reservoir in Sulige Gasfield as an example[J].Natural Gas Geoscience,2014,25(2):273-277.[陈科贵,温易娜,何太洪,等.低孔低渗致密砂岩气藏束缚水饱和度模型建立及应用——以苏里格气田某区块山西组致密砂岩储层为例[J].天然气地球科学,2014,25(2):273-277.]

[21] Li Haibo,Guo Hekun,Li Haijian,et al.Thickness analysis of bound water film in tight reservoir [J].Natural Gas Geoscience,2015,26(1):186-192.[李海波,郭和坤,李海舰,等.致密储层束缚水膜厚度分析[J].天然气地球科学,2015,26(1):182-192.]

[22] National Development and Reform Commission.SY/T 5346-2005 Rock Capillary Pressure Measurement[S].Beijing:Petroleum Industry Press,2005.[国家发展和改革委员会.SY/T 5346-2005岩石毛细管压力曲线的测定[S].北京:石油工业出版社,2005.]

[23] National Development and Reform Commission.SY/T 6490-2007 Specification for Core NMR Parameter's Measurement in Laboratory[S].Beijing:Petroleum Industry Press,2007.[国家发展和改革委员会.SY/T 6490-2007岩样核磁共振参数实验室测量规范[S].北京:石油工业出版社,2007.]

[24] Xiao Liang,Mao Zhiqiang,Jin Yan.Calculation of irreducible water saturation from NMR logs in tight gas Sands[J].Applied Magnetic Resonance,2012,42(1):113-125.

[25] Freedman R,Heaton N.Fluid characterization using nuclear magnetic resonance logging[J].Petrophysics,2015,45(3):241-250.

[26] Coates G,Xiao Lizhi,Prammer M.NMR Logging:Principles and Applications[M].Houston,Texas:Gulf Publishing Company,1999.

[27] Freedman R,Heaton N,Flaum M,et al.Wettability,saturation and viscosity from NMR measurements[J].SPE Journal,2003,8(4):317-327.

[28] Li Haibo.Core Experimental Study of NMR T2 Cutoff value[D].Beijing:Chinese Academy of Sciences,2008.[李海波.岩心核磁共振可动流体T2截止值实验研究[D].北京:中国科学院研究生院,2008.]

[29] Li Xia,Zhao Wenzhi,Zhou Cancan,et al.Dual-porosity saturation model of low-porosity and low-permeability clastic reservoirs[J].Petroleum Exploration and Development,2012,39(1):82-91.[李霞,赵文智,周灿灿,等.低孔低渗碎屑岩储集层双孔隙饱和度模型[J].石油勘探与开发,2012,39(1):82-91.]