引用本文

Wang Ning,Li Rongxi,Wang Xiangzeng,et al.Pyrolytic study on the gas-generating process of transitional shale[J].Natural Gas Geoscience,2016,27(1):189-197.[王宁,李荣西,王香增,等.海陆过渡相页岩气形成热模拟实验研究[J].天然气地球科学,2016,27(1):189-197.]
doi:10.11764/j.issn.1672-1926.2016.01.0189

海陆过渡相页岩气形成热模拟实验研究

王宁1 ,李荣西1,王香增2,张丽霞2,赵帮胜1,覃小丽1,李佳佳1,程敬华1 

摘要  
晚古生代海陆过渡相泥页岩在中国南北方广泛分布,页岩气资源潜力巨大。应用生烃热模拟实验,对采集于鄂尔多斯盆地上古生界山西组山2段未成熟海陆过渡相富有机质页岩的页岩气形成过程进行研究。实验结果表明,山2段海陆过渡相页岩在实验最低温度(T=337.2℃,RO=0.74%)时就生成液态烃和气态烃,在385.3℃(RO=1.08%)时液态烃达到生成高峰,此后甲烷(CH4)产率迅速增大,干燥系数开始变大;重烃气(C2-5)达到生成高峰(T=456.2℃,RO=2.09%)时甲烷产率曲线出现拐点;甲烷主要由液态烃裂解形成,部分由重烃气裂解形成;在实验最高温度(T=599.7℃,RO=4.45%)时甲烷产率达956.93mL/gTOC,干燥系数达99.75%,但仍有少量重烃气和液态烃可以继续裂解生成甲烷。山2段页岩气形成具有3个阶段,即337.2℃≤T≤385.3℃(0.74%≤RO≤1.08%)为生油阶段,伴有少量页岩气形成;385.3℃O≤2.09%)为油气共生阶段,页岩气以湿气为主; 456.2℃O≤4.45%)为生气阶段,页岩气以干气为主。海陆过渡相山2段页岩具有与海相Barnett页岩相似的气态烃形成过程,但是页岩气产率高。研究认为海陆过渡相山2段富有机质页岩具有页岩气勘探所需要的良好物质基础和生烃潜力。

关键词 页岩气       生烃热模拟       海陆过渡相页岩       山西组山2段       暗色页岩      

中图分类号:TE122.1      文献标志码:A      文章编号:1672-1926(2016)01-0189-09

Pyrolytic study on the gas-generating process of transitional shale

Wang Ning1 ,Li Rong-xi1,Wang Xiang-zeng2,Zhang Li-xia2,Zhao Bang-sheng1,Qin Xiao-li1,Li Jia-jia1,Cheng Jing-hua1 

Abstract  
Late Paleozoic mudstone and shale deposited in the marine-terrestrial transitional environments are widely developed in southern and northern China,showing great potential of shale gas,In order to study the process of gas generation,pyrolysis experiment was conducted on immature organic-rich shale samples collected from the section 2 of Shanxi Formation (Shan 2)in Ordos Basin,north China,Pyrolysis results indicate that liquid and gaseous hydrocarbon have been generated at the lowest experimental temperature (T=337.2℃,RO=0.74%),The peak of liquid hydrocarbon generation arrived at 385.3℃(RO=1.08%),where methane’s yield accelerates and dry coefficient increases,As the generation of heavy hydrocarbon reaches peak stage (456.2℃,RO=2.09%),inflection point occurs in the methane-yield curve,Methane is mainly generated from thermal pyrolysis of liquid hydrocarbon,with part formed from thermal pyrolysis of heavy gaseous hydrocarbon,The yield of methane reaches 956.93mL/gTOC at the highest temperature(T=599.7℃,RO=4.45%)with a dry coefficient of 99.75%,leaving small amount of liquid and heavy gaseous hydrocarbon cracking to methane,The process of gas generation could be divided into three stages:(1)Stage of primary oil production at 337.2-385.3℃(0.74%≤RO≤1.08%)with small amount of shale gas;(2)Stage of oil and gas co-existent with wet gas at 385.3-456.2℃(1.08%≤RO≤2.09%);(3)Stage of dry gas formation at 456.2-599.7℃ (2.09%≤RO≤4.45%),Compared with marine Barnett shale,transitional Shan 2 shale in Ordos Basin has the same process of gas generation but higher gas yield,The results of this study indicate that Shan 2 shale has bright gas generation potential.

Key words Shale gas;       Pyrolysis study;       Transitional shale;       The section 2 of Shanxi Formation;       Black shale;      

引言

页岩气是以吸附或游离状态赋存于富有机质泥页岩及其夹层中的[1,2]。美国是世界上最早勘探和开发页岩气的国家,至今已成功开 发了Antrim、Barnett、Eagle Ford、Fayetteville、Haynesville、Horn River、Marcellus、Montney和Woodford共9个页岩气区[3]。美国页岩气大规模商业性开发揭开了国际新能源革命的序幕[4,5]。以美国为代表的西方国家勘探开发的页岩气均为海相环境下沉积的富有机质泥页岩形成的自生自储天然气,其页岩具有与常规海相油气藏烃源岩一样的地球化学特征和物理特性[2-6-8]。 我国自2005年起开始页岩气资源勘探评价研究工作[9,10],10多年的勘探研究表明[11-13],我国页岩气资源丰富,勘探潜力巨大[10],其中南方古生界海相页岩气形成地质条件优越[11-14,15],在四川盆地及其周缘下古生界海相页岩层系获得突破[15],涪陵区块下古生界海相页岩气已经获得千亿方的探明储量,并投入商业性开发[16]。与此同时,对鄂尔多斯盆地中生界延长组湖相泥页岩进行了页岩气勘探评价工作[17,18],并在盆地中部柳坪117井延长组长7段泥页岩中获得工业气流[19]。 在晚古生代,我国经历了由海相到陆相沉积环境的巨大转变,海陆过渡环境下沉积的富有机质泥页岩在我国南北广大地区广泛分布[20],鄂尔多斯盆地所在的华北地块在早二叠世海陆过渡环境下发育的煤系地层中暗色泥页岩厚度大,有机质丰度高,热演化程度高,历来被认为是天然气重要的气源岩[10-21],其页岩气勘探潜力也已引起人们的重视[21],但目前对其页岩气资源评价的工作较少。 页岩气勘探潜力评价包括生气性、含气性和易开采性3个方面的评价[22],其中生气性评价是页岩气资源评价的物质基础[23,24]。本文选择鄂尔多斯盆地山西组山2段海陆过渡相暗色富有机质页岩,应用生烃热模拟实验对其生气性能及生气过程进行研究,为页岩气勘探潜力评价提供重要资料。

1 地质背景

鄂尔多斯盆地位于华北地块西部,从中元古代到早古生代,沉积了厚达数千米的稳定碳酸盐岩沉积[25]。受加里东构造运动影响,中晚奥陶世时,鄂尔多斯盆地随华北地块隆升,遭受了长达150Ma的剥蚀,缺失了晚奥陶世—早石炭世沉积,直到中—晚石炭世才开始沉降,海水自东北方向向西南方向侵入,发育了一套厚度巨大的海陆交互相含煤沉积,构成了鄂尔多斯盆地最重要的含气层系[26-28]。本溪组—太原组沉积时期,鄂尔多斯盆地与华北广大地区一样,整体为陆表海碳酸盐台地和扇三角洲共存的古地理格局,形成了碳酸盐岩与陆源碎屑混合的含煤沉积[27],而山西组沉积于海退背景下,盆地由太原期的陆表海演化为山西组沉积早期(山2期)的近海湖盆[28],山2期鄂尔多斯盆地由盆地中心向周边发育滨浅海相到三角洲相沉积[29]图1),其中在滨浅海相区形成了厚度较大的山西组山2段(以下简称山2段)暗色富有机质泥页岩,为良好的天然气源岩,也是潜在的页岩气资源。山西组沉积晚期(山1期)盆地进入陆相湖泊—三角洲相含煤沉积演化阶段,中晚二叠世为典型的陆源碎屑沉积建造。

2 样品与实验

2.1 样品采集

适合于生烃热模拟实验的样品必须是未成熟或低成熟的有效烃源岩。鄂尔多斯盆地东北缘山西组煤系地层热演化程度低[29],其中位于山西省保德县扒楼沟剖面的山西组露头清晰,地层划分和沉积相研究程度高,历来是地层、沉积、油气及煤田地质等研究的一条重要地质剖面[30]图1)。实测剖面及前人研究资料表明[31,32],扒楼沟剖面山2段页岩颜色为灰黑色,页理十分发育,热演化程度低,有机质丰度高,有机质类型为Ⅲ型,生烃潜力较好,适合于生烃热模拟实验。选择该剖面典型的山2段页岩样品进行生烃热模拟实验(图2),样品有机地球化学参数分别为(表1):有机碳(TOC)=8.5%,RO=0.44%,S1=1.55mgHC/g,S2=54.95mgHC/g,氢指数(IH)=6.47mgHC/gTOC

图1     研究区山2段沉积相(据文献[29],有修改)
Fig.1     Sedimentary facies diagram of Shan 2 in Ordos Basin(according to reference[29],revised)

2.2 实验方法

生烃热模拟实验可以在开放体系、半开放体系和封闭体系条件下进行[33],比较而言,封闭体系因考虑了有机质的初次裂解和烃类的二次裂解,可以模拟烃源岩的最大生气量。另外,页岩具有低孔隙度(<10%)和特低渗透率(10-9~10-6μm-2)的特点[14],其显微孔隙就相当于一个封闭体系,因而封闭体系生烃热模拟与页岩气生成的实际地质条件极为接近。据此本文选用黄金管—高压釜封闭体系,在中国科学院广州地球化学研究所有机地球化学国家重点实验室完成页岩生烃热模拟实验,实验仪器组成及实验流程参见文献[34,35]。

图2     扒楼沟剖面山西组综合柱状图及采样层位
Fig.2     Composite histogram and sampling sites of Shanxi Formation in PaLougou strata section

将页岩粉碎过100目筛,用稀盐酸处理后,取适量(约20~50mg)封入充有氩气的黄金管(长度为40mm,直径为4.5mm)中。将黄金管放置于高压釜内,通过水压对样品加压,维持恒压50MPa,误差小于1MPa。以2℃/h的升温速率加热,在300~600℃内共设置12个温度点,分别计量产物,其中气体经体积测量后送至GC6890气相色谱在线装置进行成分分析。C6-10组分用液氮冷冻在线的样品瓶来收集,用正戊烷溶液收集C6-14组分后注入6890N气相色谱进行定量分析。C14+液态烃经二氯甲烷萃取,称重计量。

3 实验结果

生烃热模拟实验液态产物包括C6-14和C14+,气态产物包括甲烷(CH4)、重烃气(C2-5)以及CO2、H2、H2S非烃类气体。根据EASY%RO原理[36]将实验温度进行相关计算得到RO,随实验温度升高,RO值相应增大,各产物累积产率(以下简称“产率”)见表2,变化特征如图3所示。 (1)液态烃:随实验温度升高,液态烃C6-14产率和C14+产率先增后减(表2,图3)。在实验最低温度(T=337.2℃,RO=0.74%)时,C6-14产率和C14+产率分别为41.48mg/gTOC和164.50mg/gTOC,C6-14产率在409.3℃(RO=1.38%)时达到最大值141.33mg/gTOC,C14+产率在361.1℃(RO=0.88%)时达到最大值

表1     生烃热模拟实验页岩样品地球化学特征
Table1 Geochemical parameters of the shale sample
样号层位岩性TOC/%S1/(mgHC/g)S2/(mgHC/g)Tmax/℃IH/(mgHC/gTOC)有机质类型RO/%
P02山2段灰黑色页岩8.51.5554.95436.36.47Ⅲ型0.44
表2     页岩样品生烃热模拟产物产率
Table 2     Products’ yields data from pyrolysis experiment for the shale sample
温度 /℃RO /%液态产物/(mg/gTOC)气态产物/(mL/gTOC)干燥系数 /%CO2/C1-5 比值
C6-14C14+总液态烃CH4C2-5C1-5H2CO2H2S
337.20.7441.48164.50205.988.272.4510.730.17351.7136.1277.1332.79
361.10.8863.11214.03277.1418.437.4725.900.46407.23121.0271.1515.72
385.31.08107.90187.27295.1745.1323.6268.761.20460.24168.6165.646.69
409.31.38141.33133.57274.90115.2647.59162.852.80500.29184.6470.783.07
432.71.69120.9690.78211.74206.8463.05269.894.34539.89224.5376.642.00
456.22.0993.1850.55143.73319.9363.85383.785.88571.62270.2383.361.49
480.22.5271.9523.9695.91448.6552.89501.558.39581.60295.1189.451.16
504.32.9950.9014.4965.39580.2929.44609.7311.64633.18298.5995.171.04
528.63.4935.898.0543.94698.8611.70710.5516.43660.06307.2698.350.93
552.83.8923.224.2827.50811.095.02816.1125.68723.68326.9599.380.89
576.24.1912.151.8313.98893.882.91896.7931.38819.94302.9899.680.91
599.74.457.081.038.11956.932.40959.3344.39860.50366.4999.750.90

图3     页岩样品生烃热模拟产物产率变化特征
Fig.3     Plot of products’ yields from pyrolysis experiment for the shale sample

214.03mg/gTOC,总液态烃(C6-14与C14+之和)产率在385.3℃(RO=1.08%)时达到最大值295.17mg/gTOC,在实验最高温度(T=599.7℃,RO=4.45%)时,C6-14产率和C14+产率分别达到最小值7.08mg/gTOC和1.03mg/gTOC。 (2)烃类气体:在实验最低温度(T=337.2℃,RO=0.74%),甲烷和重烃气产率分别为8.27mL/gTOC和2.45mL/gTOC,随实验温度升高,甲烷产率不断增大(图3),在实验最高温度(T=599.7℃,RO=4.45%)时,甲烷产率达到最大值956.93mL/gTOC。重烃气产率随实验温度升高先增后减(图3),在456.2℃(RO=2.09%)时达到最大值63.85mL/gTOC,在实验最高温度(T=599.7℃,RO=4.45%)时,重烃气产率降低为2.40mL/gTOC。气态烃(C1-5)产率变化特征与甲烷一样随实验温度升高不断增大,气态烃干燥系数先减后增,在实验温度为385.3℃(RO=1.08%)时达到最小值65.64%。 (3)非烃类气体:随实验温度升高,非烃类气体CO2、H2和H2S产率均增大,但三者产率不同,其中H2产率最低,CO2产率最高(图3)。

4 讨论

4.1 页岩生烃过程与页岩气成因

液态烃和气态烃在实验最低温度(T=337.2℃,RO=0.74%)时就已经生成,液态烃形成峰温在385.3℃(RO=1.08%),最大液态烃产率为295.17mg/gTOC,之后液态烃产率逐渐下降而甲烷与重烃气产率却大幅度升高(图3),说明液态烃裂解生成大量甲烷和重烃气,且以生成甲烷为主,干燥系数在液态烃裂解时(T=385.3℃,RO=1.08%)开始增大的现象就可证明这一点。在456.2℃(RO=2.09%)时,重烃气(C2-5)达到生成高峰,甲烷产率曲线出现拐点且甲烷产率继续增大,这说明此后重烃气裂解是甲烷的来源之一。从实验结果可以看出,C14+、C6-14和C2-5三者的形成峰温依次升高(图3),说明裂解先后顺序依次为C14+、C6-14和C2-5,这符合烃类生成活化能C14+6-142-5的规律,也验证了高碳数烃类优先生成并优先裂解的理论[37]。 在实验最高温度(T=599.7℃,RO=4.45%)时,仍然有少量重烃气和液态烃存在,说明重烃气和液态烃在此时还未完全裂解。在实验最高温度(T=599.7℃,RO=4.45%)甲烷产率达956.93mL/gTOC表2),干燥系数达到99.75%。前人热模拟实验研究表明,煤系烃源岩(包括其中的泥页岩)在600~800℃之间仍可以大量生气,其生气量可能占总生气量的20%~30%,甚至更多[38],因此本文实验的页岩样品在最高实验温度下形成的甲烷并非其最大产率,在其后应该仍有相当数量甲烷生成。

4.2 非烃类气体成因探讨

页岩生烃热模拟实验产物中非烃类气体以CO2和H2S为主,H2含量相对较少(表2)。烃源岩中H2生成一般认为主要与有机质裂解时加氢反应受到阻碍或者与实验条件有关[39],H2随实验温度升高而累积,与前人研究结果一致[39]。低温阶段CO2是有机质中以羧基为主的含氧官能团热解产生[40],CO2/C1-5值随实验温度升高而降低,这是由于含氧官能团比脂肪结构所需的活化能要小(表2[40,41],即CO2一般先于烃类生成,是低温阶段最主要的气体组分,高温阶段CO2可能来自C—C键断裂,但数量不及烃类气体。H2S是硫与有机质之间反应夺取其中氢形成的[42],在337.2~528.6℃(RO=0.74%~3.49%)温度段,H2S随实验温度升高而累积,之后出现波动,可能是H2S参与到气体的二次反应或者H2S生成机制有变动所致[43]

4.3 页岩气生成模式

4.3.1 生油阶段(T≤385.3℃,RO≤1.08%)

页岩样品原样实测镜质体反射率(RO)为0.44%,在实验最低温度(T=337.2℃,RO值为0.74%)时,液态烃已经生成,而气态烃生成量很少,随实验温度升高,成熟度RO值增加,在实验温度T=385.3℃(RO=1.08%)时液态烃达到生成高峰,而气态烃形成相对较少,因此温度低于385.3℃(对应的RO<1.08%)时,页岩主要为生油阶段。

4.3.2 油气共生阶段(385.3℃O≤.09%)

在液态烃生成高峰(T=385.3℃,RO=1.08%)之后,液态烃产率逐渐降低,而气态烃产率逐渐增大,说明生油高峰后液态烃开始裂解形成气态烃,此阶段液态烃和气态烃共存。当温度为456.2℃(RO=2.09%)时,重烃气(C2-5)产率达到高峰,干燥系数为83.39%,说明页岩气形成的气态烃以湿气为主。

图4     山2段页岩气形成模式
Fig.4     Pattern diagram of gas generation for Shan 2 shale

4.3.3 生气阶段(T>456.2℃,RO>2.09%)

在重烃气形成高峰(456.2℃,RO=2.09%)之后,重烃气产率逐渐降低,而甲烷气产率大量增加,当实验温度为504.3℃(RO=2.99%)时,甲烷气干燥系数为95.17%,说明页岩气的形成进入干气阶段。直到实验设置最高温度(T=559.7℃,RO=4.45%)时,甲烷产率为956.93ml/gTOC,干燥系数为99.57%。

4.4 与海相Barnett页岩对比

Barnett页岩是美国德克萨斯州福特沃斯盆地一套石炭系海相黑色页岩,是美国最早勘探和开发的页岩气层位[44]。Hill等[6]曾采用同本文一样的实验方法即黄金管—高压釜封闭体系对Barnett海相页岩气形成过程进行了热模拟实验研究。实验用的Barnett页岩样品TOC=5.51%、RO=0.44%、S1=2.39mgHC/g、S2=19.1mgHC/g、IH=346mgHC/gTOC[6],表明Barnett页岩样品处于未成熟热演化阶段,有机质类型为Ⅱ型,生烃潜力较好。将其实验结果与山2段页岩实验结果进行对比(图5)。可以看出,鄂尔多斯盆地海陆过渡相山2段页岩热模拟实验产物中CH4、C2-5、C1-5和CO2等产率的变化特征与海相Barnett页岩实验结果相似,但前者产率相对较高(图5)。 具体分析认为,同Barnett页岩相比,山2段页岩具有高的CH4、C2-5和C1-5产率,说明山2段页岩具有较高的生烃能力。山2段页岩CO2产率比Barnett页岩产率明显偏高,这与山2段页岩具有过渡有机质类型有关,其有机质中含有较高含量的腐殖型有机组分,前文已提到,CO2由有机组分脱含氧官能团形成,腐殖型有机组分中含氧官能团较多。

图5     海相Barnett页岩与海陆过渡相山2段页岩气态产物产率对比
Fig.5     Comparison diagram of gas yield for marine Barnett shale and transitional Shan 2 shale

对比分析表明,海陆过渡相山2段页岩具有与海相Barnett页岩相似的气态烃形成过程,而且气态烃产率相对较高,生烃能力相对较强。因此,山2段富有机质页岩具有页岩气勘探所需要的良好物质基础和生烃过程。

5 结论

(1)鄂尔多斯盆地山2段海陆过渡相页岩在实验最低温度(337.2℃,RO=0.74%)时就生成液态烃和气态烃,在385.3℃(RO=1.08%)时液态烃形成达到峰值(最大产率为295.17mg/gTOC),甲烷在重烃气(C2-5)形成高峰之后(456.2℃,RO=2.09%)大量形成。实验表明甲烷主要是由液态烃裂解形成的,部分由重烃气裂解形成。在实验最高温度599.7℃(RO=4.45%)时甲烷产率达956.93mL/gTOC,干燥系数达99.75%,但仍有少量重烃气和液态烃可以继续裂解生成甲烷。 (2)根据生烃热模拟实验结果,认为山2段页岩气形成具有3个阶段模式,即337.2℃≤T≤385.3℃(0.74%≤RO≤1.08%)为生油阶段,伴有少量页岩气形成;385.3℃O≤2.09%)为油气共生阶段,页岩气以湿气为主; 456.2℃O≤4.45%)为生气阶段,页岩气以干气为主。 (3)海陆过渡相山2段页岩具有与Barnett海相页岩相似的气态烃形成过程,而且山2段页岩气产率更高。实验表明海陆过渡相山2段富有机质页岩具有页岩气勘探所需要的良好物质基础和生烃潜力。

参考文献(References)



[1] Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]

[2] Li Yuxi,Qiao Dewu,Jiang Wenli,et al.Gas content of gas-bearing shale and its geological evaluation summary[J].Geological Bulletin of China,2011,30(2):308-317.[李玉喜,乔德武,姜文利,等.页岩气含气量和页岩气地质评价综述[J].地质通报,2011,30(2):308-317.]

[3] Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J].Acta Petrolei Sinica,2009,30(4):484-490.[聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-490.]

[4] Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.]

[5] Hu Wenrui.Development and utilization of non-conventional natural gas resources in China[J].Journal of Daqing Petroleum Institute,2010,34(5):9-16.[胡文瑞.中国资源开发与利用[J].大庆石油学院学报,2010,34(5):9-16.]

[6] Hill R J,Zhang Etuan,Katz B J,et al.Modeling of gas generation from the Barnett Shale,Fort Wroth Basin[J].AAPG Bulletin,2007,91(4):501-521.

[7] Jarvie D M.Evaluation of Hydrocarbon Generation and Storage in the Barnett Shale,Fort Worth Basin,Texas[R].Texas:Humble Geochemical Services Division,2004.

[8] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas system:The Missippian Barnett Shale of north-central Texas as one model for thermogenic shale gas assessment[J].AAPG Bulletin,2007,91(4):475-409.

[9] Dong Dazhong,Cheng Keming,Wang Yuman,et al.Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region,China[J].Oil & Gas Geology,2010,31(3):288-299.[董大忠,程克明,王玉满,等.中国上扬子区下古生界页岩气形成条件及特征[J].石油与天然气地质,2010,31(3):288-299.]

[10] Zhao Wenzhi,Dong Dazhong,Li Jianzhong,et al.The resource potential and future status in natural gas development of shale gas in China[J].Engineering Sciences,2012,14(7):46-52.[赵文智,董大忠,李建忠,等.中国页岩气资源潜力及其在天然气未来发展中的地位[J].中国工程科学,2012,14(7):46-52.]

[11] Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.]

[12] Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.[贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.]

[13] Dong Dazhong,Zou Caineng,Yang Ye,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]

[14] Zhang Jinchuan,Jiang Shengling,Tang Xuan,et al.Accumulation types and resources characteristics of shale gas in China[J].Natural Gas Industry,2009,29(12):109-114.[张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点[J].天然气工业,2009,29(12):109-114.]

[15] Dong Dazhong,Wang Yuman,Li Denghua,et al.Global shale gas development revelation and prospect of shale gas in China[J].Engineering Sciences,2012,14(6):69-76.[董大忠,王玉满,李登华,等.全球页岩气发展启示与中国未来发展前景展望[J].中国工程科学,2012,14(6):69-76.]

[16] Feng Aiguo,Zhang Jianping,Shi Yuanhui,et al.Characteristics of marine shale gas play in Fuling Block in the Middle Yangtze area[J].Special Oil and Gas Reserviors,2013,20(6):15-19.[冯爱国,张建平,石元会,等.中扬子地区涪陵区块海相页岩气层特征[J].特种油气藏,2013,20(6):15-19.]

[17] Xu Shilin,Bao Shujing.Preliminary analysis of shale gas resource potential and favorable areas in Ordos Basin[J].Natural Gas Geoscience,2009,20(3):460-465.[徐士林,包书景.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J].天然气地球科学,2009,20(3):460-465.]

[18] Luo Peng,Ji Liming.Reservoir characteristics and potential evaluation of continental shale gas[J].Natural Gas Geoscience,2013,24(5):1060-1068.[罗鹏,吉利明.陆相页岩气储层特征与潜力评价[J].天然气地球科学,2013,24(5):1060-1068.]

[19] Jiang Chengfu,Wang Xiangzeng,Zhang Lixia,et al.Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation,southeast Ordos Basin[J].Geology in China,40(6):1880-1888.[姜呈馥,王香增,张丽霞,等.鄂尔多斯盆地东南部延长组长7段陆相页岩气地质特征及勘探潜力评价[J].中国地质,40(6):1880-1888.]

[20] Qiu Zhongjian,Zhao Wenzhi,Deng Songtao.Development prospect and strategic significance of tight gas and shale gas in China[J].Engineering Sciences,2012,14(6):4-8.[邱中建,赵文智,邓松涛.我国致密砂岩气和页岩气的发展前景和战略意义[J].中国工程科学2012,14(6):4-8.]

[21] Zhang Lixia,Jiang Chengfu,Guo Chao.Exploration potential of Upper Paleozoic shale gas in the eastern Ordos Basin[J].Journal of Xi’an Shiyou University:Natural Science Edition,2012,27(1):23-34.[张丽霞,姜呈馥,郭超.鄂尔多斯盆地东部上古生界页岩气勘探潜力分析[J].西安石油大学学报:自然科学版,2012,27(1):23-34.]

[22] Li Yanjun,Liu Huan,Liu Jiaxia,et al.Geological regional selection and an evaluation method of resource potential of shale gas[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(2):28-34.[李延钧,刘欢,刘家霞,等.页岩气地质选区及资源潜力评价方法[J].西南石油大学学报:自然科学版,2011,33(2):28-34.]

[23] Ma Suping,Sun Dong,Zhang Xiaobao,et al.The study of hydrocarbon generation kinetics in Lower Cretaceous lacustrine source rocks,Qingxi Depression,Jiuxi Basin[J].Natural Gas Geoscience,2011,22(2):219-223.[马素萍,孙东,张晓宝,等.酒西盆地青西凹陷下白垩统湖相烃源岩生烃动力学研究[J].天然气地球科学,2011,22(2):219-223.]

[24] Liu Quanyou,Jin Zhijun,Gao Bo,et al.Characterization of gas pyrolysates from different types of Permian source rocks in Sichuan Basin[J].Natural Gas Geoscience,2010,21(5):700-704.[刘全有,金之钧,高波,等.四川盆地二叠系不同类型烃源岩生烃热模拟实验[J].天然气地球科学,2010,21(5):700-704.]

[25] Yang Junjie.Tectonic Evolution and Oil-gas Reservoirs Distribution of the Ordos Basin[M].Beijing:Petroleum Industry Press,2002:1-3.[杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002:1-3.]

[26] Cao Daiyong,Wang Chongjing,Li Jing,et al.Basic characteristics and accumulation rules of shale gas in coal measures[J].Coal Geology & Exploration,2014,42(4):25-30.[曹代勇,王崇敬,李靖,等.煤系页岩气的基本特点与聚集规律[J].煤田地质与勘探,2014,42(4):25-30.]

[27] Li Zengxue,Wei Jiuchuan,Wang Mingzhen,et al.Sea-level changes in the late Palaeozoic epicontinental basin in northern China[J].Sedimentary Facies and Palaeogeography,1996,16(5):2-10.[李增学,魏久传,王明镇,等.华北南部晚古生代陆表海盆地层序地层格架与海平面变化[J].岩相古地理,1996,16(5):2-10.]

[28] Shao Longyi,Dong Daxiao,Li Mingpei,et al.Sequence-paleogeography and coal accumulation of the Carboniferous-Permian in the North China Basin[J].Journal of China Coal Society,2014,39(8):1725-1734.[邵龙义,董大啸,李明培,等.华北石炭—二叠纪层序—古地理及聚煤规律[J].煤炭学报,2014,39(8):1725-1734.]

[29] Zhang Hong,He Zonglian,Jin Xianglan,et al.Tectonic Evolution and Coal Accumulation of the Ordos Basin:A Brief Explanation of the Geological Tectonic Map of the Ordos Coal Basin(with scale of 1:500000)[M].Beijing:Geological Publishing House,2005:40.[张泓,何宗莲,晋香兰,等.鄂尔多斯盆地构造演化与成煤作用——1:500000鄂尔多斯盆地地质构造图简要说明[M].北京:地质出版社,2005:40.]

[30] He Zixin,Yang Hua,Yuan Xiaoqi.Atlas of Geology Profile in Ordos Basin[M].Beijing:Petroleum Industry Press,2004:29-32.[何自新,杨华,袁效奇.鄂尔多斯盆地地质剖面图集[M].北京:石油工业出版社,2004:29-32.]

[31] Fu Jinhua,Guo Shaobin,Liu Xinshe,et al.Shale gas accumulation condition and exploration potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J].Journal of Jilin University:Earth Science Edition,2013,43(2):382-389.[付金华,郭少斌,刘新社,等.鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J].吉林大学学报:地球科学版,2013,43(2):382-389.]

[32] Guo Wei,Liu Honglin,Xue Huaqing,et al.Depositional faceis of Permian Shanxi Formation gas shale in the northern Ordos Basin and its impact on shale reservoir[J].Acta Geologica Sinica,2015,89(5):931-941.[郭伟,刘洪林,薛华庆,等.鄂尔多斯盆地北部山西组页岩沉积相及其对页岩储层的控制作用[J].地质学报,2015,89(5):931-941.]

[33] Wang Zhichao,Mi Jingkui,Li Xianqing,et al.Current situation and problems of simulation experiment approach of hydrocarbon generation[J].Natural Gas Geoscience,2009,20(4):592-597.[王治朝,米敬奎,李贤庆,等.生烃热模拟实验方法现状与存在问题[J].天然气地球科学,2009,20 (4):592-597.]

[34] Liu Jinzhong,Tang Yongchun.Modeling methane generation in coal by means of kinetics method[J].Chinese Science Bulletin,1998,43(11):1187-1191.[刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.]

[35] Xing Lantian,Zhang Xiaobao,Zhang Rui,et al.Kinetics of hydrocarbon generation for Jurassic source rocks and application in northern Qaidam Basin:Taking Saishenteng Depression as an example[J].Natural Gas Geoscience,2012,23(1):161-166.[邢蓝田,张晓宝,张瑞,等.柴北缘侏罗系烃源岩生烃动力学及其应用——以赛什腾凹陷为例[J].天然气地球科学,2012,23(1):161-166.]

[36] Sweeney J J,Burnham A K.Evaluation of simple model of vitrinite reflectance based on chemical kinetics[J].AAPG Bulletin,1990,74(10):1559-1570.

[37] Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].2nd edition.Berlin and New York:Springer-Verlag,1984:169-174.

[38] Wang Dongliang,Zhang Ying,Lu Shuangfang,et al.The simulation experiment on gas-generat ing potential of over mature source rocks[J].Acta Sedimentologica Sinica,2012,30(6):1172-1178.[王东良,张英,卢双舫,等.烃源岩过成熟阶段生气潜力的实验室模拟[J].沉积学报,2012,30(6):1172-1178.]

[39] Guo Guian,Chen Yicai,Zhang Daisheng,et al.Studying the characteristic of the hydrocarbon generation of dark mud and coals by thermosimulation in Jurassic of Turpan-Hami Basin[J].Journal of Southwest Petroleum Institute,2005,27(4):13-15.[郭贵安,陈义才,张代生,等.吐哈盆地侏罗系热模拟生烃演化特征研究[J].西南石油学院学报,2005,27(4):13-15.]

[40] Li Rongxi,Gao Yunwen.Coal Source Rock and Its Oil/Gas Reservoir Formation[M].Xi’an:Shannxi Science Technique Publishing House,2004.[李荣西,高云文.煤系烃源岩与油气成藏[M].西安:陕西科学技术出版社,2004.]

[41] Sweeney J J,Burnham A K,Braum R L.A model of hydrocarbon generation from type Ⅰ Kerogen:Application to Unita Basin,Utah[J].AAPG Bulletin,1987,71:967-985.

[42] Yi Qin,Song Zhiguang,Liu Jinzhong.Influences of sulfur on composition of oil cracked gas and carbon isotopes[J].Oil & Gas Geology,2010,31(6):309-314.[伊琴,宋之光,刘金钟.硫对原油裂解气组成及碳同位素组成的影响[J].石油与天然气地质,2010,31(6):309-314.]

[43] Huss E B,Burnham A K.Gas evolution during pyrolysis of various Colorado oil shales[J].Fuel,1982,61(12):1188-1196.

[44] Wang Xiangzeng.Lacustrine Shale Gas[M].Beijing:Petroleum Industry Press,2014:11-12.[王香增.陆相页岩气[M].北京:石油工业出版社,2014:11-12.]