天然气地球科学

• 天然气地质学 • 上一篇    下一篇

塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理

赵力彬,张同辉,杨学君,郭小波,饶华文   

  1. 1.中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒 841000;
    2.西安石油大学地球科学与工程学院,陕西 西安 710065
  • 收稿日期:2016-11-01 修回日期:2018-03-03 出版日期:2018-04-10 发布日期:2018-04-10
  • 作者简介:赵力彬(1979-),男,河北保定人,高级工程师,硕士,主要从事致密砂岩气勘探开发地质研究.E-mail:zhaolb-tlm@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“库车坳陷深层—超深层天然气田开发示范工程”(编号:2016ZX05051);国家科技重大专项“超深层低渗气藏有效开发技术”(编号:2016ZX05015-005)联合资助.
     

Gas-water distribution characteristics and formation mechanics in deeptight sandstone gas reservoirs of Keshen block,Kuqa Depression,Tarim Basin

Zhao Li-bin,Zhang Tong-hui,Yang Xue-jun,Guo Xiao-bo,Rao Hua-wen   

  1. 1.Research Institute of Exploration and Development,Tarim Oilfield Company,PetroChina,Korla 841000,China;
    2.School of Geosciences and Engineering,Xi’an Shiyou University,Xi’an 710065,China
  • Received:2016-11-01 Revised:2018-03-03 Online:2018-04-10 Published:2018-04-10

摘要:

库车坳陷克深区块白垩系巴什基奇克组发育(超)深层裂缝性致密砂岩气藏,为高温高压系统,气水分布关系复杂,给勘探开发带来了挑战。通过系统剖析致密砂岩储层特征、气藏源储关系、气水分布特征等,结合相渗等实验,研究气藏的气水分布成因机制与模式。研究表明,巴什基奇克组致密砂岩基质储集空间以残余粒间孔、粒间溶蚀扩大孔为主,孔喉结构复杂,断层、裂缝形成不同尺度的裂缝网络系统,储层非均质性强;“源储显著分离”是克深区块有别于国内外其他典型“源储互层型或紧邻共生型”致密砂岩气藏主要特征;“源储分离”使得天然气需要通过断层、裂缝系统,经过较长距离的二次运移进入致密储层;天然气充注程度受断层—裂缝系统、裂缝网密度、岩石基质物性与孔隙结构影响,距离裂缝面越近,岩石基质中天然气充注强度越大;在膏盐岩直接盖层影响下,气藏地层水主要通过断层和裂缝网络反排,排替作用是天然气主要的成藏机制;进而将克深地区深层裂缝性致密砂岩气藏气水分布模式归纳为3类,缝网发育的正常气水分布模式、缝网不发育的气水分布模式和局部缝网发育的气水共存分布模式。

关键词: 致密砂岩气, 气水分布, 气藏出水机理, 库车坳陷, 克深区块

Abstract:

The deep fractured tight sandstone gas reservoir of K1bs  in Keshen block of Kuqa Depression has a high temperature and high pressure system and very complex gas-water distribution characteristics which takes a great challenge for exploration and production. This article carried out a research on the genetic mechanism and model of gas-water distribution in these gas reservoirs through systematical analyses of reservoir characteristics,source-reservoir relationship and gas-water distribution of tight sandstone gas reservoir combined with relative permeability test. Research shows that the tight sandstone reservoir in K1bs  has strong reservoir heterogeneity which is demonstrated by matrix with complex pore structure whose pore space gives first place to residual intergranular pore and intergranular dissolution enlarged pore and different scales of fracture network system formed with faults and fractures;Keshen block is distinguished from other domestic and abroad tight sandstone gas reservoirs with adjacent source-reservoir type by remarkable separation of source and reservoir that makes gas a long secondary migration to tight reservoir through faults and fracture system;Gas charging level is in control of fault-facture system,fracture density,matrix physical property and pore structure so that the closer to fracture,the greater reservoir gas charging level will be;Under the effect of gypsum-salt cap rocks,gas reservoir water is reverse discharged mainly through faults and fracture network and replacement effect is the main reservoir-forming mechanism for gas;and then the gas-water distribution pattern of the deep fractured tight sandstone gas reservoirs in Keshen block was classified into three types,i.e.,normal gas-water distribution pattern with fracture network developed,gas-water distribution pattern with fracture network non-developed and gas-water coexistence distribution with fracture network partly developed.

Key words: Tight sandstone gas reservoir, Gas-water distribution, Water production mechanism, Kuqa Depression, Keshen block

中图分类号: 

  • TE122.1

[1]U.S.Energy Information Administration.Annual Energy Outlook 2013[R].http:∥www.eia.gov/forecasts/archive/aeo13/.
[2]Christophe M,Jamie S,Steve S.Unconventional gas:A review of regional and global resource estimates[J].Energy,2013,1(48):1-14.
[3]Yu Xinghe,Li Shunli,Yang Zhihao.Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J].Lithologic Reservoirs,2015,27(1):1-14.
于兴河,李顺利,杨志浩.致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J].岩性油气藏,2015,27(1):1-14.
[4]Jiang Ping,Mu Longxin,Zhang Ming,et al.Differences of reservoir characteristics between domestic and oversea tight gas of CNPC and its developing trends[J].Natural Gas Geoscience,2015,26(6):1095-1105.
蒋平,穆龙新,张铭,等.中石油国内外致密砂岩气储层特征对比及发展趋势[J].天然气地球科学,2015,26(6):1095-1105.
[5]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,29(3):257-264.
戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,29(3) :257-264.
[6]Wang Zhaoming.Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.
王招明.塔里木盆地库车拗陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
[7]Zhao Mengjun,Lu Xuesong,Zhuo Qingong,et al.Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin[J].Acta Petrolei Sinica,2015,36(4):395-404.
赵孟军,鲁雪松,卓勤功,等.库车前陆盆地油气成藏特征与分布规律[J].石油学报,2015,36(4):395-404.
[8]Gao Zhiyong,Zhu Rukai,Feng Jiarui,et al.Jurassic-Neogene conglomerate characteristics in Kuqa Depression and their response to tectonic uplifting of Tianshan Mountains[J].Oil & Gas Geology,2015,36(4):534-544.
高志勇,朱如凯,冯佳睿,等.库车坳陷侏罗系—新近系砾岩特征变化及其对天山隆升的响应[J].石油与天然气地质,2015,36(4):534-544.
[9]Tong Xiaoguang,Guo Bincheng,Li Jianzhong,et al.Comparison study on accumulation & distribution of tight sandstone gas between China and the United States and its significance[J].Engineering Sciences,2012,14(6):8-15.
童晓光,郭彬程,李建忠.中美致密砂岩气成藏分布异同点比较研究与意义[J].中国工程科学,2012,14(6):8-15.
[10]Cumella S P,Scheevel J.The influence of stratigraphy and rock mechanics on Mesaverde gas distribution,Piceance Basin,Colorado[C]∥Cumella S P,Shanley K W,Camp W K.Understanding,Exploring,and Developing Tight-gas Sands:2005 Vail Hedberg Conference.AAPG Hedberg Series,2008:137-156.
[11]Zhao Jingzhou,Li Jun,Cao Qing,et al.Hydrocarbon accumulation patterns of large tight oil and gas fields[J].Oil & Gas Geology,2013,34(5):573-583.
赵靖舟,李军,曹青,等.论致密大油气田成藏模式[J].石油与天然气地质,2013,34(5):573-583.
[12]Li Jian,Wei Guoqi,Xie Zengye,et al.Accumulation mechanism and main controlling factors of large tight sandstone gas fields in China:Cases study on Ordos Basin and Sichuan Basin[J].Acta Petrolei Sinica,2013,34(1):14-28.
李剑,魏国齐,谢增业,等.中国致密砂岩大气田成藏机理与主控因素——以鄂尔多斯盆地和四川盆地为例[J].石油学报,2013,34(1):14-28.
[13]Mccracken M,Fitz D E,Ryan T C.Tight gas surveillance and characterization:Impact of production logging[C]∥Keystone Colorado:SPE Unconventional Reservoirs Conference,2008:1-7.
[14]Shanley K W,Cluff R M,Ptobinson J W.Factors controlling prolific gas production from low-permeabilily sandstone reservoirs:Implications for resource assessment,prospect development,and risk analysis[J].AAPG Bulletin,2004,88(7):1083-1121.
[15]Hao Guoli,Liu Guangdi,Xie Zengye,et al.Gas-water distributed pattern in Xujiahe Formation tight gas sandstone reservoir and influential factor in central Sichuan Basin[J].Natural Gas Geoscience,2010,21(3):427-434.
郝国丽,柳广弟,谢增业,等.川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J].天然气地球科学,2010,21(3):427-434.
[16]Jiang Fujie,Pang Xiongqi,Jiang Zhenxue,et al.Physical simulation experiment of gas Charging in tight sandstone[J].Geological Review,2007,53(6):844-849.
姜福杰,庞雄奇,姜振学,等.致密砂岩气藏成藏过程的物理模拟实验[J].地质论评,2007,53(6):844-849.
[17]Wei Yunsheng,Shao Hui,Jia Ailin.Gas water distribution model and control factors in low permeability high water saturation sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):822-826.
位云生,邵辉,贾爱林.低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J].天然气地球科学,2009,20(5):822-826.
[18]Lin Jiashan,Zhou Wen,Zhang Zonglin,et al.Research on dominant factors and gas-water distribution modes in relative water rich area in Low Palaeozoic of Jingbian Gasfield[J].Petroleum Geology & Oilfield Development in Daqing,2007,26(5):72-74.
林家善,周文,张宗林,等.靖边气田下古气藏相对富水区控制因素及气水分布模式研究[J].大庆石油地质与开发,2007,26(5):72-74.
[19]Guo Qiulin,Chen Ningsheng,Hu Junwen,et al.Geo-model of tight sandstone gas accumulation and quantitative simulation[J].Natural Gas Geoscience,2012,23(2):199-206.
郭秋麟,陈宁生,胡俊文,等.致密砂岩气聚集模型与定量模拟探讨[J].天然气地球科学,2012,23(2):199-206.
[20]Liu Guangdi,Sun Mingliang,Lv Yanfang,et al.Assessment of gas charging process in Kuqa Depression[J].Science in China:Series D,2008,38(supplement1):103-110.
柳广弟,孙明亮,吕延防,等.库车坳陷天然气成藏过程有效性评价[J].中国科学:D辑,2008,38(增刊1):103-110.
[21]Mao Yakun,Zhong Dakang,Neng Yuan,et al.Fluid inclusion characteristics and hydrocarbons accumulation of the Cretaceous reservoirs in Kuqa foreland thrust belt,Tarim Basin,Northwest China[J].Journal of China University of Mining & Technology,2015,44(6):1100-1109.
毛亚昆,钟大康,能源,等.库车前陆冲断带白垩系储层流体包裹体特征与油气成藏[J].中国矿业大学学报,2015,44(6):1100-1109.
[22]Liu Guangdi.Petroleum Geology(4th edition)[M].Beijing:Petroleum Industry Press,2009.
柳广弟.石油地质学(第四版)[M].北京:石油工业出版社,2009.
[23]Pang Xiongqi,Zhou Xinyuan,Dong Yuexia,et al.Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(5):28-38.
庞雄奇,周新源,董月霞,等.含油气盆地致密砂岩类油气藏成因机制与资源潜力[J].中国石油大学学报:自然科学版,2013,37(5):28-38.

[1] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[2] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[3] 崔明明,王宗秀,樊爱萍,高万里. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学, 2018, 29(9): 1364-1375.
[4] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[5] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[6] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[7] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[8] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[9] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
[10] 李国欣, 易士威, 林世国, 高阳, 李明鹏, 李德江, 王昌勇. 塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J]. 天然气地球科学, 2018, 29(10): 1506-1517.
[11] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[12] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[13] 李耀华,宋岩,姜振学,王朋岩,赵荣,刘顺宇,阴丽诗. 全球致密砂岩气盆地参数统计分析[J]. 天然气地球科学, 2017, 28(6): 952-964.
[14] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[15] 王烽. 鄂尔多斯盆地东部神木区块二叠系山西组致密砂岩气低产主控因素分析[J]. 天然气地球科学, 2017, 28(5): 687-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓佳,朱维耀,刘锦霞,张贞,马千,张萌,邓凯,马丽. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学, 2013, 24(3): 456 -460 .
[2] 陈文浩,王志章,潘潞,李汉林,侯加根. 致密砂岩储层流动单元定量识别方法探讨[J]. 天然气地球科学, 2016, 27(5): 844 -850 .
[3] 朱维耀,马东旭,朱华银,安来志,李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892 -897 .
[4] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828 -838 .
[5] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845 -852 .
[6] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085 -1093 .
[7] 刘琴琴,陈桂华,陈晓智,祝彦贺,杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094 -1101 .
[8] 李红哲,马峰,谢梅,杨巍,张成娟,王朴,赵健. 柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制#br# [J]. 天然气地球科学, 2018, 29(8): 1102 -1110 .
[9] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217 -1230 .
[10] 王强, 张大勇, 王杰, 陶成, 腾格尔, 刘文汇. 烃类与非烃综合判识干酪根与原油裂解气[J]. 天然气地球科学, 2018, 29(9): 1231 -1239 .