天然气地球科学

• 非常规天然气 • 上一篇    下一篇

砂土中不同产状甲烷水合物形成和分解过程研究

蒋观利,吴青柏,杨玉忠,展静   

  1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃  兰州 730000
  • 收稿日期:2013-03-25 修回日期:2013-05-29 出版日期:2013-12-10 发布日期:2013-12-10
  • 通讯作者: 蒋观利atos@lzb.ac.cn E-mail:atos@lzb.ac.cn
  • 作者简介:蒋观利(1978-),男,重庆人,副研究员,博士,主要从事多年冻土区天然气水合物研究. E-mail:atos@lzb.ac.cn.
  • 基金资助:

    国家自然科学基金(编号:41001038);冻土工程国家重点实验自主研究课题(编号:SKLFSE-ZQ-23)联合资助.

Formation and Dissociation of Methane Hydrate in Different Occurrences in Sand

JIANG Guan-li,WU Qing-bai,YANG Yu-zhong,ZHAN Jing   

  1. State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental andEngineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2013-03-25 Revised:2013-05-29 Online:2013-12-10 Published:2013-12-10

摘要:

为了研究不同的产状对沉积物中甲烷水合物形成和分解过程的影响,在砂土中开展了块状、层状、结核状和分散状4种不同产状甲烷水合物的形成和分解实验。实验结果表明,产状对砂土中甲烷水合物形成和分解过程的影响比较明显。在形成过程中,块状甲烷水合物的甲烷气体转化率最高,其次是层状,再次是分散状,结核状最低。分散状甲烷水合物的形成速率最快,其气体消耗速率峰值也最高;块状甲烷水合物的形成过程耗时最长,层状甲烷水合物次之,结核状甲烷水合物再次之,形成过程耗时最短的是分散状甲烷水合物。在分解过程中,块状甲烷水合物的稳定性最好,其次是层状甲烷水合物,接下来是结核状甲烷水合物,稳定性最差的是分散状甲烷水合物。

关键词: 甲烷水合物, 砂土, 产状, 形成, 分解

Abstract:

To study the effect of the occurrences on the formation and dissociation of methane hydrate in sediment,the formation and dissociation experiments of methane hydrate in four different occurrences in sand,including massive,layered,nodular and disseminated,were conducted.The results showed that the effect of occurrences on the formation and dissociation of methane hydrate was evident and clear.The conversion rate of methane was highest in massive,lower in layered and disseminated,lowest in nodular.The methane hydrate formed fastest in the state of disseminated whose peak of methane conversion rate was highest,too.It took relatively the longest time for massive methane hydrate to form,secondly for layered,thirdly for nodular,and shortest for disseminated.It also showed that in dissociation process,the stabilization of massive methane hydrate was the best,secondly was layered,thirdly was nodular,and the stabilization of disseminated methane hydrate was the worst.

Key words: Methane hydrate, Sand, Occurrence, Formation, Dissociation

中图分类号: 

  • TE132.3

[1]Malone R D.Gas Hydrates Topical Report,Report No.DOE/METC/SP-218[R].Washington DC:U.S.Department of Energy,1985.

[2]Handa Y P,Stupin D.Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70--Radius silica gel pores[J].The Journal of Physical Chemistry,1992,96:8599-8603.

[3]Matsumoto R,Watanabe Y,Satoh M,et al.Distribution and occurrence of marine gas hydrates-preliminary results of ODP Leg 164-Blake ridge drilling[J].Journal of Geological Society of Japan,1996,102:932-944.[HJ2mm]

[4]Uchida T,Ebinuma T,Ishizaki T.Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J].The Journal of Physical Chemistry(B),1999,103:3659-3662.

[5]Makogon Y F.Hydrate of Natural Gas[M].Tulsa,OK:Pennwell Publishing Co.,1981:1601.

[6]Uchida T,Ebinuma T,Takeya S,et al.Effects of pore sizes on dissociation temperatures and pressures of methane,carbon dioxide and propane hydrate in porous media[J].The Journal of Physical Chemistry(B),2002,106:820-826.[HJ]

[7]Uchida T,Takeya S,Chuvilin E M,et al.Decomposition of methane hydrates in sand,sandstone,clays,and glass beads[J].Journal of Geophysical Research:Solid Earth,2004,109,B05206:1-12.

[8]Seshadri K,Wilder J W,Smith D H.Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions[J].The Journal of Physical Chemistry(B),2001,10:2627-2631.

[9]Wu Zhang,Wilder J W,Smith D H.Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria[J].Thermodynamics,2002,48(10):2324-2331.[JP]

[10]Jiang Guanli,Wu Qingbai,Zhan Jing,et al.The effects of cooling rate and particle size of medium to the formation of methane hydrate in sands[J].Natural Gas Geoscience,2011,22(5):920-925.[蒋观利,吴青柏,展静.等,降温速率和粒径对砂土中甲烷水合物形成过程影响研究[J].天然气地球科学,2011,22(5):920-925.]

[11]Wang Yingmei,Wu Qingbai,Pu Yibin,et al.Effect of temperature gradient on process of methane hydrate formation-dissociation and its resistivity changes in coarse sand[J].Natural Gas Geoscience,2012,23(1):19-25.[王英梅,吴青柏,蒲毅彬,等.温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J].天然气地球科学,2012,23(1):19-25.][12]Sloan E D.Clathrate Hydrates of Natural Gas[M].Third Edition.Boca Raton,Florida:Taylor & Francis Group,CRC Press,2008.

[1] 秦胜飞,李金珊,李伟,周国晓,李永新. 川中地区须家河组水溶气形成及脱气成藏有利地质条件分析[J]. 天然气地球科学, 2018, 29(8): 1151-1162.
[2] 倪斌,汤良杰,李萌,宋智华. 塔里木盆地鸟山东断裂带构造特征、形成机制及油气地质意义[J]. 天然气地球科学, 2018, 29(6): 834-844.
[3] 王坤,胡素云,刘伟,王铜山,黄擎宇,石书缘,马奎. 塔里木盆地古城地区上寒武统热液改造型储层形成机制与分布预测[J]. 天然气地球科学, 2017, 28(6): 939-951.
[4] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[5] 王国建,唐俊红,汤玉平,李吉鹏,杨俊,卢丽. 地表油气地球化学勘探中轻烯烃形成机理探讨[J]. 天然气地球科学, 2017, 28(2): 324-330.
[6] 陶士振,袁选俊,侯连华,张国生,杨帆,陶小晚,卫延召,李欣,张成龙,王岚,孙国欣,王颖,高长海. 大型岩性地层油气田(区)形成与分布规律[J]. 天然气地球科学, 2017, 28(11): 1613-1624.
[7] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[8] 马志欣,付斌,王文胜,罗川又,张吉,张春阳,魏千盛. 基于层次分析的辫状河储层水平井地质导向策略[J]. 天然气地球科学, 2016, 27(8): 1380-1387.
[9] 张阳,邱隆伟,杨保良,王军,李际,田美荣,隋淑玲. 河控三角洲河口坝沉积特征及其形成过程中受水位变化的影响[J]. 天然气地球科学, 2016, 27(5): 809-819.
[10] 张明峰,熊德明,吴陈君,马万云,孙丽娜,妥进才. 准噶尔盆地东部地区侏罗系烃源岩及其低熟气形成条件[J]. 天然气地球科学, 2016, 27(2): 261-267.
[11] 张德民,鲍志东,郝雁,杨飞,陈敏,仲向云. 塔里木盆地牙哈_英买力寒武系潜山区优质储层形成模式[J]. 天然气地球科学, 2016, 27(10): 1797-1807.
[12] 贾建称,张泓,贾茜,吴艳,张妙逢,陈晨. 煤储层割理系统研究:现状与展望[J]. 天然气地球科学, 2015, 26(9): 1621-1628.
[13] 魏国齐,杨威,谢武仁,谢增业,曾富英,莫午零,沈珏红,金惠. 四川盆地震旦系—寒武系大气田形成条件、成藏模式与勘探方向[J]. 天然气地球科学, 2015, 26(5): 785-795.
[14] 李昌伟,陶士振,董大忠,管全中. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学, 2015, 26(5): 986-1000.
[15] 田仁飞,杨春峰,胡宇,杨振峰,李秋菊. 识别岩性油藏薄储集层的谱分解技术[J]. 天然气地球科学, 2015, 26(2): 360-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!