天然气地球科学

• 非常规天然气 • 上一篇    下一篇

不同颗粒介质内甲烷水合物形成反应特征

张鹏,吴青柏,蒋观利,董兰凤   

  1. 1.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000; 2.兰州大学土木工程与力学学院,甘肃 兰州 730000
  • 收稿日期:2012-04-13 修回日期:2012-06-04 出版日期:2013-04-10 发布日期:2013-04-10
  • 通讯作者: 张鹏zhangpeng@lzb.ac.cn E-mail:zhangpeng@lzb.ac.cn
  • 作者简介:张鹏(1981-),男,山东滨州人,助理研究员,博士,主要从事冻土区水合物研究. E-mail:zhangpeng@lzb.ac.cn.
  • 基金资助:

    青年科学基金项目 (编号:41101070);中国科学院西部行动计划项目 (编号:KZCX2-XB3-03);中国科学院寒区旱区环境与工程研究所青年人才成长基金项目 (编号:51Y184A41);国家自然科学基金冰川冻土学特殊学科点建设项目 (编号:J0930003/J0109);中央高校基本研究费专项基金项目 (编号:LZUJBKY-2011-7)联合资助.

Formation Reaction Characteristics of Methane Hydrate in Different Granular Media

ZHANG Peng,WU Qing-bai,JIANG Guan-li,DONG Lan-feng   

  1. 1.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental andEngineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;2.School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730000,China
  • Received:2012-04-13 Revised:2012-06-04 Online:2013-04-10 Published:2013-04-10

摘要:

在半饱和含水态具有不同粒径、孔隙半径的人工、天然介质——硅胶、粉土内形成甲烷水合物,3支pF-meter探头测量反应过程中介质内垂直方向上不同位置处的基质势,据此计算分析介质内由水合物形成引起的水分消耗规律,进而探讨不同介质内甲烷水合物形成反应特征。通过实验发现,多孔介质的颗粒、孔径物理性质明显影响甲烷水合物的形成反应特征:水合物在具天然介质性质的粉土内的形成反应是一个长期持续过程,相反地,在硅胶内的形成反应过程较短且在硅胶内均匀形成;人工多孔介质——硅胶粉内的水合物形成反应速率维持恒定,天然多孔介质——粉土内的水合物形成速率由快减慢;甲烷气体由反应釜顶部注入,气体扩散进入介质顶层的速率最

关键词: 高, 顶层介质内水合物形成速率略高于中、下层的形成速率, 经历相同的形成条件, 粉土内的最终水分转化率略高于硅胶内的最终水分转化率。 甲烷水合物, 形成, 水分, 颗粒性质, 多孔介质

Abstract:

Methane hydrate was formed in the artificial and the natural media which had half-saturated moisture contents and different particle sizes and pore radiuses,and the artificial was chosen as silica gel powder and the natural was chosen as loess.During the reaction processes,the matrix potential values on different positions in the vertical direction of media were measured by three pF-meter probes.According to the measured values,the water depletion rules in the media caused by the methane hydrate formation reactions were calculated and analyzed and the characteristics of methane hydrate formation reactions in media were then studied.Experimental results show that the physical properties of different media-particle size and pore radius can obviously affect formation reaction characteristics of methane hydrate: the formation reaction process of methane hydrate in loess,complying with natural media properties,is perennial and durative,reversely,that in silica gel powder is ephemeral and uniform;during reaction processes,the formation reaction rate within silica gel powder,artificial medium,keeps constant and that within loess,natural medium,slows down as reaction progressing;because methane gas was injected into substrate through reaction cell top,methane diffuses into top layer of substrate fastest and the hydrate formation reaction rate within there was slightly faster than those in both middle and bottom layers;undergoing the same conditions for methane hydrate formation,final water conversion rate in loess is slightly higher than that in silica gel powder.The above comparing result analyses also bring some reference values in geological aspect to us. 

Key words: Methane hydrate, Formation reaction, Moisture, Particle properties, Porous media

中图分类号: 

  • TE135

[1]Lei Huaiyan,Wang Xianbin,Fang Xuan,et al.Current situation of gas hydrates research and challenges for future[J].Acta Sedimentologica Sinica,1999,17(3):493-498.[雷怀彦,王先彬,房玄,等.天然气水合物研究现状与未来挑战[J].沉积学报,1999,17(3):493-498.]

[2]Fan Shuanshi,Guo Tianmin.Progress in study of clathrate hydrates[J].Chemical Industry and Engineering,1999,18(1):5-10.[樊栓狮,郭天民.笼型水合物研究进展[J].化工进展,1999,18(1):5-10.]

[3]Zheng Junwei,Shi Dou.International natural gas hydrate research and development situation on document counting point of view[J].Natural Gas Geoscience,2005,16(6):825-829.[郑军卫,史斗.从文献计量角度看国际天然气水合物研发态势[J].天然气地球科学,2005,16(6):825-829.]

[4]Lu Zhenquan,Sultan Nabil,Jin Chunshuang,et al.Semi-quantitative analysis of factors affecting gas hydrate formation conditions and its fractions[J].Chinese Journal of Geophysics,2008,51(1):125-132.[卢振权,Sulatan Nabil,金春爽,等.天然水合物形成条件与含量影响的半定量分析[J].地球物理学报,2008,51(1):125-132.]

[5]Zang Xiaoya,Liang Deqing,Fan Shuanshi,et al.Influence of 5-Type Zeolite powder on tetrahydrofuran hydrate formation and dissociation process[J].Acta Physico Chimica Sinica,2009,25(6):1047-1052.[臧小亚,梁德青,樊栓狮,等.5分子筛粉末对四氢呋喃水合物的生成及分解过程的影响[J].物理化学学报,2009,25(6):1047-1052.]

[6]Wu Shiguo,Dong Dongdong,Yang Shengxiong,et al.Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea[J].Chinese Journal of Geophysics,2009,52(7):1849-1857.[吴时国,董冬冬,杨胜雄,等.南海北部陆坡细颗粒沉积物天然气水合物系统的形成模式初探[J].地球物理学报,2009,52(7):1849-1857.]

[7]Xu Wei,Qui Nansheng,Sun Changyu,et al.Different factors on the thickness of gas hydrate stability zone[J].Natural Gas Geoscience,2010,21(3):528-534.[许威,邱楠生,孙长宇,等.不同因素对天然气水合物稳定带厚度的影响[J].天然气地球科学,2010,21(3):528-534.]

[8]Handa Y P,Stupin D.Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70 radius silica gel pores[J].The Journal of Physical Chemistry B,1992,96:8599-8603.

[9]Uchida T,Ebinuma T,Ishizaki T.Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J].The Journal of Physical Chemistry B,1999,103:3659-3662.

[10]Smith D H,Wilder J W,Seshadri J.Methane hydrate equilibria in silica gels with broad pore-size distributions[J].AIChE  Journal,2002,48(2):393-400.

[11]Aladko E Y,Dyadin Y A,Fenelonov V B,et al.Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[J].The Journal of Physical Chemistry B,2004,108:16540-16547.

[12]Jiang Guanli,Wu Qingbai,Pu Yibin.The effect of cooling process on the formation of methane hydrate within the coarse sand[J].Chinese Journal of Geophysics,2009,52(9):2387-2393.[蒋观利,吴青柏,蒲毅彬.降温过程对粗砂土中甲烷水合物形成的影响[J].地球物理学报,2009,52(9):2387-2393.]

[13][KG*2/3]Hideki M,LRyo O,Yasushi K,et al.Water Permeability Measurements of Gas Hydrate-Bearing Sediments[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[14]Evgeny M C,Ekaterina V K,Tatiana S S,et al.Experimental Simulation of Frozen Hydrate Containing Sediments Formation[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[15]Pascal G,Christophe D,Gérard M,et al.Methane Hydrate Equilibrium Conditions in a Porous Medium:From Experiment to Theory[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[16]Eugeny Y A,Yury A D,Eduard G L,et al.Dissociation Conditions of Gas Hydrates in Mesoporous Silica Gels in Wide Ranges of Pressure and Water Content[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[17]Georgi G,Werner F K,Doroteya K S,et al.Universal Shrinking Core Model For Hydrate Formation and Decomposition[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[18]Faisal D A,Clarke M A,Bishnoi P R.Determination of The Intrinsic Rate of Gas Hydrate Formation and Decomposition Using an In-Situ Particle Size Analyser[C].Proceedings of the Fifth International Conference on Gas Hydrates,Trondheim,Norway,June 12-16,2005.

[19]Peng Zhang,Qingbai Wu,Yibin Pu,et al.Water transfer characteristics during methane hydrate formation and dissociation processes inside saturated sand[J].Journal of Natural Gas Chemistry,2010,19(1):71-76.

[20]Peng Zhang,Qingbai Wu,Guanli Jiang,et al.Water transfer characteristics in the vertical direction during methane hydrate formation and dissociation processes inside non-saturated media[J].Journal of Natural Gas Chemistry,2010,19(2):139-145.

[21]Yousif M H,Sloan E D.Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media[J].SPE Reservoir Eng,1991,6(4):452-458.

[1] 崔明明,王宗秀,樊爱萍,高万里. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学, 2018, 29(9): 1364-1375.
[2] 秦胜飞,李金珊,李伟,周国晓,李永新. 川中地区须家河组水溶气形成及脱气成藏有利地质条件分析[J]. 天然气地球科学, 2018, 29(8): 1151-1162.
[3] 刘小兵,温志新,王兆明,贺正军,宋成鹏. 中东扎格罗斯盆地构造演化与油气分布[J]. 天然气地球科学, 2018, 29(7): 973-981.
[4] 倪斌,汤良杰,李萌,宋智华. 塔里木盆地鸟山东断裂带构造特征、形成机制及油气地质意义[J]. 天然气地球科学, 2018, 29(6): 834-844.
[5] 滕龙,殷启春,方朝刚,郑红军,沈雪华,朱红兵,陈基炜. 利用高密度电阻率法预测第四系浅层生物气——以江苏省南通地区为例[J]. 天然气地球科学, 2018, 29(5): 719-728.
[6] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[7] 洪峰,姜林,卓勤功,鲁雪松,马行陟,郝加庆. 中国前陆盆地异常高压气藏类型[J]. 天然气地球科学, 2018, 29(3): 317-327.
[8] 王媛,林畅松,李浩,孙彦达,何海全,王清龙,姬牧野,张曼莉. 高频层序地层格架中碳酸盐岩成岩作用研究——以哈萨克斯坦Marsel探区下石炭统谢尔普霍夫阶为例[J]. 天然气地球科学, 2018, 29(1): 28-41.
[9] 李跃林,赵晓波,王雯娟,白坤森,熊钰. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响——以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学, 2018, 29(1): 140-150.
[10] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[11] 冀昆,郭少斌,李新,罗燕颖,姜黎明,曹先军. 溶孔发育的含沥青质碳酸盐岩核磁共振特征分析——以四川盆地高磨地区龙王庙组储层为例[J]. 天然气地球科学, 2017, 28(8): 1257-1263.
[12] 张林,万玉金,杨洪志,苏云河,张满郎. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式[J]. 天然气地球科学, 2017, 28(8): 1191-1198.
[13] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
[14] 余琪祥,余风华,史政. 塔里木盆地巴什托构造异常高压特征及成因[J]. 天然气地球科学, 2017, 28(7): 1000-1007.
[15] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!