天然气地球科学 ›› 2010, Vol. 21 ›› Issue (3): 528–534.doi: 10.11764/j.issn.1672-1926.2010.03.528

• 天然气水合物 • 上一篇    

不同因素对天然气水合物稳定带厚度的影响

许威, 邱楠生, 孙长宇, 陈光进   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2.中国石油大学(北京)盆地与油藏研究中心, 北京 102249; 
    3.中国石油大学(北京)化学科学与工程学院,北京 102249
  • 收稿日期:2009-09-07 修回日期:2009-12-14 出版日期:2010-06-10 发布日期:2010-06-10
  • 通讯作者: 许威xwswpi@163.com. E-mail:xwswpi@163.com.
  • 作者简介:许威(1985-),男,河南商丘人,硕士研究生,主要从事天然气水合物研究.
  • 基金资助:

    国家自然科学基金重点项目(编号:U0633003); “863”项目(编号:2006AA09A208)联合资助.

Different Factors on the Thickness of Gas Hydrate Stability Zone

XU Wei, QIU Nan-Sheng, SUN Chang-Yu, CHEN Guang-Jin   

  1. 1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum,Beijing 102249, China; 
    2. Research Center for Basin and Reservoir, China University of Petroleum,Beijing 102249, China; 
    3. Faculty of Chemical Science and Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2009-09-07 Revised:2009-12-14 Online:2010-06-10 Published:2010-06-10

摘要:

天然气水合物在未来能源、自然环境和灾害等方面具有重要的研究意义,天然气水合物稳定带厚度用来表示水合物发育与分布的可能范围,与地温梯度、海水深度和海底温度等参数密切相关。根据Dickens和Quinby相平衡公式,定量计算了不同地温梯度、海水深度和海底温度参数下的水合物稳定带厚度。在保证其中2个参数不变的情况下,天然气水合物稳定带厚度随地温梯度增加而有规律的递减,随海水深度增加不断增加,随海底温度增加水合物稳定带厚度降低并且呈良好的线性关系。海底温度不变条件下,水合物稳定带厚度从地温梯度大、水深浅的区域,向地温梯[JP2]度小、水深较深的区域不断增大。海底深度不变时,从地温梯度大、海底温度高的区域到地温梯度小、海底温度低的区域,水合物稳定带厚度不断增大。此外,讨论了基于Dickens和Quinby、Brown及Peltzer和Brewer等3种相平衡公式计算水合物稳定带厚度的差异,根据Dickens和Quinby相平衡公式计算的水合物稳定带厚度最大,其他相平衡公式计算的水合物稳定带厚度相对较小。

关键词: 天然气水合物, 稳定带厚度, 相平衡

Abstract:

Gas hydrate has important research significances in future energy, natural environment and disaster. The thickness of gas hydrate stability zone (GHSZ) shows the possible range of hydrate development and distribution. It is greatly related with geothermal gradient, sea bottom temperature and water depth. Based on hydrate phase equilibrium formula of Dickens and Quinby, we quantitatively calculated the thickness of GHSZ in different conditions of geothermal gradient, water depth and sea bottom temperature. When the two parameters in three parameters are assumed unchanged, the thickness of GHSZ decreases with the increase of geothermal gradient regularly, the thickness of GHSZ increase with water depth, and the thickness of GHSZ decrease with increasing of sea bottom temperature as a good liner relationship. If the temperature of the sea bottom is a constant, the thickness of GHSZ will increase gradually from the regions with the larger geothermal gradient and shallower water depth to the smaller geothermal gradient and deeper water depth. If the water depth is unchanged, the thickness of GHSZ will increase gradually from the region with the larger geothermal gradient and higher sea bottom temperature to the smaller geothermal gradient and lower temperature. In addition, we also discussed the differences among the three hydrate phase equilibrium formulas for calculating the thickness of GHSZ. The maximize result of GHSZ thickness was gotten by Dickens-Quinby′s phase equilibrium formula gets, and the smaller values was done by the two others.

Key words: Gas hydrate, Hydrate stability zone thickness, Phase equilibrium.

[1]Sloan E D,Koh C A.Overview and historical perspective[M]//Sloan E D,Koh C A.Clathrate Hydrates of Natural Gases.3rd Edition.Boca Raton,London:CRC Press,2007:1- 29.
[2]Udachin K A,Ripmeester J A.A complex clathrate hydrate structure showing bimodal guest hydration[J].Nature,1999,397:420-423.
[3] Matsumoto R,Uchida T,Waseda A,et al.Occurrence,structure and composition of natural gas hydrate recovered from the Blake Ridge,northwest Atlantic[R].Proceedings of Ocean Drill Program Science Results,2000,164:13-28.
 [4]Kvenvolden K A,Lorenson T D.The global occurrence of natural gas hydrates[J].American Geophysical Union,2001,(124):3- 18.
 [5] Fan Shuanshi,Liu Feng,Chen Duofu.The research of the origin mechanism of marine gas hydrate[J].Natural Gas Geoscience,2004,15(5):524- 530.[樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学,2004,15(5):524- 530.][6]Kvenvolden K A.Gas hydrates geological perspective and global change[J].Reviews of Geophysics,1993,31(2):173- 187.
 [7]Max M D,Johnsen H K,Dillon W P.Why gas hydrate ?[M]// Max M D,Johnsen H K,Dillon W P,ed.Economic Geology of Natural Gas Hydrate.Berlin:Springer,2006:17- 44.
 [8] Paull C K,Normark W R,Ussler W,et al.Association among active seafloor deformation,mound formation,and gas hydrate growth and accumulation within the seafloor of the Santa Monica basin,offshore California[J].Marine Geology,2008,250(3/4):258-275.
 [9] Sultan N,Cochonat P,Foucher J P,et al.Effect of gas hydrates melting on seafloor slope instability[J].Marine Geology,2004,213:379-401.
[10] Xu Wenshi,Yu Xinghe,Liu Nina,et al.The development perspective and environmental problems of nature gas hydrates[J].Natural Gas Geoscience,2005,16(5):680- 683.[ 徐文世,于兴河,刘妮娜,等.天然气水合物开发前景和环境问题[J].天然气地球科学,2005,16(5):680- 683.]
[11]Wang Hongbin,Liang Jin,Gong Yuehua,et al.Estimation of the heat flow in the northern of the South China Sea based on the seismic data of gas hydrate[J].Geoscience,2005,19(1):67- 73.[王宏斌,梁劲,龚跃华,等.基于天然气水合物地震数据计算南海北部陆坡海底热流[J].现代地质,2005,19(1):67- 73.]
[12] Xu W,Ruppel C.Predicting the occurrence,distribution,and evolution of methane gas hydrate in porous marine sediments[J].Geophysical Research,1999,104(B3):5081- 5095.
[13] Dickens G R,Quinby H M S.Methane hydrate stability in seawater[J].Geophysical Research Letters,1994,21(19):2115- 2118.
[14] Dillon W P,Max M D.Oceanic gas hydrate[M]//Max M D.Natural Gas Hydrate in Oceanic and Permafrost Environments.Dordrecht:Kluwer Academic Publishers,2003:61- 63.
[15] Handa Y P.Effect of hydrostatic pressure and salinity on the stability of gas hydrates[J].Journal of Physical Chemistry,1990,94:2652- 2657.
[16] Dickens G R,Quinby H M S.Methane hydrate stability in pore water:A simple theoretical approach for geophysical applications[J].Journal of Geophysical Research- Solid Earth,1997,102(B1):773- 784.
[17] Zatsepina O Y,Buffett B A.Phase equilibrium of gas hydrate:Implications for the formation of hydrate in the deep sea floor[J].Geophysical Research Letters,1997,24(13):1567- 1570.
[18]Bishnoi P R,Dholabhai P D.Equilibrium conditions for hydrate formation for a ternary mixture of methane,propane and carbon dioxide,and a natural gas mixture in the presence of electrolytes and methanol[J].Fluid Phase Equilibria,1999,160:821- 827.
[19] Wang Shuhong,Song Haibin,Yan Wen.The change of external conditions effects on the phase equilibrium curve of gas hydrate and the thickness of hydrate stability zone[J].Progress in Geophysics,2005,20(3):761- 768.[王淑红,宋海斌,颜文.外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响[J].地球物理学进展,2005,20(3):761- 768.]
[20] Jin Chunshuang,Wang Jiyang,Zhang Guangxue.Factors affecting natural gas hydrate stability zone in the South China Sea[J].Mineral Deposits,2005,24(4):388- 397.[ 金春爽,汪集旸,张光学.南海天然气水合物稳定带的影响因素[J].矿床地质,2005,24(4):388- 397.]
[21]Brown K M,Bangs N L,Froelich P N,et al.The nature,distribution,and origin of gas hydrate in the Chile Triple Junction region[J].Earth and Planetary Science Letters,1996,139(3/4):471- 483.
[22] Peltzer E T,Brewer P G.Practical chemistry and empirical Predictions of methane hydrate stability[M]//Max M D.Natural Gas Hydrate in Ocean and Permafrost Environments.Dordrecht:Kluwer Academic Publishers,2003:17-28.

 

[1] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[2] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[3] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[4] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[5] 肖红平,吴青柏,林畅松,魏伟,张金华,彭涌,张鹏,张巧珍. 天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例[J]. 天然气地球科学, 2016, 27(10): 1913-1923.
[6] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
[7] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
[8] 张伟,何家雄,卢振权,苏丕波,李晓唐,刘志杰. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11): 2185-2197.
[9] 刘杰,刘江平,程飞,杨文海. 基于岩石物理方法分析青藏高原天然气水合物填充模式[J]. 天然气地球科学, 2015, 26(11): 2198-2207.
[10] 郑明明, 蒋国盛,宁伏龙,刘力,张凌,李实,张可,Chikhotkin V.F.. 模拟冻土区水合物地层骨架的人造岩心实验研究[J]. 天然气地球科学, 2014, 25(7): 1120-1126.
[11] 苏丕波,乔少华,付少英,梁金强,苏明,杨睿,吴能友. 南海北部琼东南盆地天然气水合物成藏数值模拟[J]. 天然气地球科学, 2014, 25(7): 1111-1119.
[12] 刘乐乐,鲁晓兵,张旭辉. 天然气水合物分解引起多孔介质变形流固耦合研究[J]. 天然气地球科学, 2013, 24(5): 1079-1085.
[13] 周锡堂,樊栓狮,梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2): 259-264.
[14] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868-874.
[15] 刘涛, 郑国东, 潘永信, 刘宏芳. 地质微生物对海洋天然气水合物的影响[J]. 天然气地球科学, 2009, 20(6): 992-999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!