天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

草本沼泽泥炭加水热解产物烃类气体氢同位素特征

段毅,吴应忠,赵阳,曹喜喜,马兰花   

  1. 1.甘肃省油气资源研究重点实验室(中国科学院西北生态环境资源研究院),
    中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.长安大学地球科学与资源学院,陕西 西安 71005;3.中国科学院大学,北京 10009;
    4.辽宁石油化工大学石油与天然气工程学院,辽宁 抚顺 113001;
    5.兰州大学招生办公室,甘肃  兰州 730000;
    6.国家地震局兰州地震研究所,甘肃 兰州 730000
  • 收稿日期:2017-12-17 修回日期:2018-02-01 出版日期:2018-03-10 发布日期:2018-03-10
  • 作者简介:段毅(1956-),男,甘肃镇原人,研究员,博士生导师,博士,主要从事油气地球化学、 石油地质学和有机地球化学研究.E-mail:duany@lzb.ac.cn.
  • 基金资助:
    国家自然科学基金项目(编号:172121; 1772108;1272125) 联合资助.
     
     

Study on hydrogen isotopes of hydrocarbon gases generated during hydrous pyrolysis of herbaceous marsh peat

Duan Yi,Wu Ying-zhong,Zhao Yang,Cao Xi-xi,Ma Lan-hua   

  1. 1.Gansu Provincial Key Laboratory of Petroleum Resources;Key Laboratory of Petroleum Resources Research,
    Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;
    2.School of Earth Science & Resources,Chang’an University,Xi’an 71005,China;
    3.University of Chinese Academy of Sciences,Beijing 10009,China;
    .College of Petroleum Engineering,Liaoning Shihua University,Fushun 113001,China;
    5.Admissions Office,Lanzhou University,Lanzhou 730000,China;
    6.Earthquake Research Institute of Lanzhou,SSB,Lanzhou 730000,China
  • Received:2017-12-17 Revised:2018-02-01 Online:2018-03-10 Published:2018-03-10

摘要:

为了认识成岩水介质对热解煤层气氢同位素的影响,对草本泥炭进行了加水和无水热解模拟实验,研究了热解产物烃类气体的氢同位素组成及其差异性与演化规律,发现成岩水介质对热成因烃类气体氢同位素组成具有显著的影响。在泥炭中加入氢同位素值高于泥炭形成环境水的水,其模拟实验产生的烃类气体氢同位素值显著增高;并且从泥炭连续热解至RO值为 5.5%时,加水泥炭模拟实验使热解甲烷、乙烷和丙烷平均δD值分别增加了7‰、2‰和66‰。随着模拟温度升高,生成的烃类气体的δD值增大。认为加水模拟实验使热解烃类气体氢同位素值增高起因于水氢与有机氢同位素的交换。建立了具有较高δD值的淡水参与下热解烃类气体δD值与RO值的数学模型,以及不同烃类气体之间δD值的数学模型。这些研究成果为成岩水介质参与下草本沼泽成煤物质热解煤层气的成因研究提供了科学依据。

关键词: 模拟实验, 烃类气体, 氢同位素, 成岩水介质, 影响因素

Abstract:

In order to understand the influence of diagenetic water medium on the isotopic compositions of thermogenic coalbed gas,hydrous and anhydrous pyrolysis experiments were performed on herbaceous marsh peat.We studied the hydrogen isotopic compositions,their differences and evolutionary law of hydrocarbon gases generated during the pyrolysis of the samples.It was found that the diagenetic water medium has a significant effect on the hydrogen isotopic composition of the hydrocarbon gases.Adding water with higher hydrogen isotopic value than peat-formed environmental water,the hydrocarbon isotope value of the hydrocarbon gas produced by peat pyrolysis was significantly higher.At pyrolysis intervals from peat to vitrinite reflectance values (RO) of 5.5%,the average δD values of pyrolytic methane,ethane and propane produced by hydrous peat pyrolysis experiment increased by 7‰,2‰ and 66‰,respectively.As the simulated temperature increased,the δD value of the generated hydrocarbon gas increased.It was considered that higher hydrogen isotope value of hydrocarbon gas produced by hydrous peat pyrolysis experiment resulted from the isotope exchange between water hydrogen and organic hydrogen.The relationships between RO values and the hydrogen isotopic compositions of the hydrocarbon gases generated by hydrous peat pyrolysis and the hydrogen isotopic relationship between the hydrocarbon gases were established.These results may provide a basis for studying on the genesis of coalbed gas formed by herbaceous marsh coal-forming material with the participation of diagenetic water media.

Key words: Simulation experiment, Gas product, Hydrogen isotope, Diagenetic water medium, Influencing factor

中图分类号: 

  • TE122.1+13

[1]Clayton J L.Geochemistry of coalbed gas:A review[J].International Journal of Coal Geology,1998,35(1):159-173.
[2]Tao Mingxin.Research status and development trend of coalbed methane geochemistry[J].Progress in Natural Science,2005,15(6):68-652.
陶明信.煤层气地球化学研究现状与发展趋势[J].自然科学进展,2005,15(6):68-652.
[3]Dai J X,Qi H F,Song Y,et al.Composition,carbon isotope characteristics and the origin of coalbed gases in China and their implications[J].Science in China:Series B,1986,30(12):132-1337.
[]Song Yan,Liu Shaobo,Hong Feng,et al.Geochemical characteristics and genesis of coalbed methane in China[J].Acta Petrolei Sinica,2012,33(supplement 1):99-106.
宋岩,柳少波,洪峰,等.中国煤层气地球化学特征及成因[J].石油学报,2012,33(增刊1):99-106.
[5]Duan Y,Duan M C,Sun T,et al.Thermal simulation study on the influence of coal-forming material on the isotopic composition of thermogenic coalbed gas[J].Geochemical Journal,2016,50(1):81-88.
[6]Hoering T C.Thermal reaction of kerogen with added water,heavy water and pare organic substances[J].Organic Geochemistry,198,5():267-278.
[7]Schimmelmann A,Lewan M D,Wintsch R P.D/H isotope ratios of kerogen,bitumen,oil,and water in hydrous pyrolysis of source rocks containing kerogen types Ⅰ,Ⅱ,ⅡS,and Ⅲ[J].Geochimica et Cosmochimica Acta,1999:63(22):3751-3766.
[8]Lu Shuangfang,Xue Haitao,Li Jijun,et al.Dynamics and Application of Hydrocarbon Isotope Fractionation of Natural Gas[M].Beijing:Petroleum Industry Press,2010.
卢双舫,薛海涛,李吉君,等.天然气碳氢同位素分馏动力学及其应用[M].北京:石油工业出版社,2010.
[9]Wang Xiaofeng,Liu Wenhui,Xu Yongchang,et al.Thermal simulation study on the role of water in the formation of gaseous hydrocarbons in organicmatter[J].Progress in Natural Science,2006,16(10):1275-1281.
王晓锋,刘文汇,徐永昌,等.水在成烃演化中作用的热模拟实验研究[J].自然科学进展,2006,16(10):1275-1281.
[10]Duan Y,Wu B X,He J X.Characterization of gases and solid residues from closed system pyrolysis of peat and coals at two heating rates[J].Fuel,2011,90(3):97-979.
[11]Junk T,Catallo W J.Hydrogen isotope exchange reactions involving C-H(D,T) bonds[J].Chemical Society Reviews,1997,26:01-06.
[12]Lewan M D.Sulphur-radical control on petroleum formation rates[J].Nature,1998,391(6663):16-166.
[13]Reeves E P,Seewald J S,Sylva S P.Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions[J].Geochimica et Cosmochimica Acta,2012,77:582-599.
[1]Sun Lina,Zhang Mingfeng,Wu Chenjun,et al.The effect of water medium on the products of different pyrolysis system[J].Natural Gas Geoscience,2015,26(3):52-532.
孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3):52-532.

[1] 彭威龙,胡国艺,刘全有,贾楠,房忱琛,龚德瑜,于聪,吕玥,王鹏威,冯子齐. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263.
[2] 曾旭, 李剑, 田继先, 王波, 国建英, 沙威.  柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309.
[3] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[4] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[5] 秦胜飞,周国晓. 气田水对甲烷氢同位素分馏作用[J]. 天然气地球科学, 2018, 29(3): 311-316.
[6] 左罗,蒋廷学,罗莉涛,吴魏,赵昆. 基于渗流新模型分析页岩气流动影响因素及规律[J]. 天然气地球科学, 2018, 29(2): 296-304.
[7] 陈晓艳,田福清,邹华耀,郭柳汐,芦晓伟,殷杰,王道军. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验[J]. 天然气地球科学, 2018, 29(1): 103-113.
[8] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[9] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[10] 蔡郁文,张水昌,何坤,米敬奎,张文龙,王晓梅,王华建,吴朝东. 磁铁矿对有机质生烃及同位素分馏的影响[J]. 天然气地球科学, 2017, 28(2): 331-340.
[11] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829-1838.
[12] 吴伟,罗冰,罗文军,王文之. 再论四川盆地川中古隆起震旦系天然气成因[J]. 天然气地球科学, 2016, 27(8): 1447-1453.
[13] 谢增业,李志生,国建英,张璐,董才源. 烃源岩和储层中沥青形成演化实验模拟及其意义[J]. 天然气地球科学, 2016, 27(8): 1489-1499.
[14] 马东旭,许勇,吕剑文,吉鸿杰,妥成荣,郝乐伟,苏龙,王琪. 鄂尔多斯盆地临兴地区下石盒子组物源特征及其与储层关系[J]. 天然气地球科学, 2016, 27(7): 1215-1224.
[15] 王希彬,李中平,张铭杰,邢蓝田,曹春辉,刘艳,李立武. 固相微萃取—气相色谱—同位素质谱法测定天然气中微量烃类单分子氢同位素组成[J]. 天然气地球科学, 2016, 27(6): 1084-1091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!