Natural Gas Geoscience

Previous Articles     Next Articles

Identification of bacterial-like fossils in marine source rocks in south China

Shen Bao-jian,Qin Jian-zhong,Tengger,Pan An-yang,Yang Yun-feng,Bian Li-zeng   

  1. 1.SINOPEC  Key Laboratory of Hydrocarbon Accumulation,Wuxi 214151,China;
    2.Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214151,China;3.Nanjing University,Nanjing 210023,China
  • Received:2017-02-27 Revised:2018-03-15 Online:2018-04-10 Published:2018-04-10

Abstract:

Based on the results of conventional geochemical analysis,zoogloea fossils were discovered in the low mature marine hydrocarbon source rocks and coal seams in south China,and the sizes of bacterial-like fossils ranged from dozens of nanometers to several microns with circular,oval,oblate shapes,which were observed in the thin section and scanning electron microscope.The confirmed bacterial-like fossils in the Permian source rocks were mainly formed by the symbiotic sulphur bacteria with gypsum.Abundant nanoscale bacterial-like fossils discovered in the Chengkou section within Cambrian strata were mainly in the shape of rod-short columnar.Many possible bacterial-like fossils were found in Permian,Silurian,and Cambrian source rocks with high maturity under the scanning electron microscope.There was still some preliminary perspective as follows: bacterial-like fossils were prevalent in the source rocks and had a symbiotic relationship with source rocks,especially in the mudstone,siliceous rocks,some stratum containing coal seam and gypsum;the bacteria on the surface of mudstone formed microbial mats;the bacteria in siliceous rocks had the behavior of dissolving silicon;the symbiotic bacteria with gypsum in the coal seam were sulphur bacteria playing important role in the formation of gypsum.The study of the formation mechanism and environment of bacterial-like fossils via online analysis on microdomains will provide new insights for evaluation of source rocks.

Key words: South China, Excellent marine source rocks, Bacterial-like fossil, Sedimentary environment

CLC Number: 

  • TE121.3+2

[1]Schopf J W.Disparate rates,differing fates:tempo and mode of evolution changed from the Precambrian to the Phanerozoic[J].Proceedings of the National Academy of Sciences of the United States of America,1994,91:6735-6742.
[2]Delong E F,Pace N R.Environmental diversity of bacteria and archaea[J].Systematic Biology,2001,50(4):470-478.
[3]Soudry D,Champetier Y.Microbial processes in the Negev phosphorites(southern Israel)[J].Sedimentology,1983,30(3):411-423.
[4][KG*5/6]Glenn C R,Arthur M A.Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals:Authigenesis in modern organic rich sediments[J].Marine Geology,1988,80(88):231-267.
[5]Rao V P,Nair R R.Microbial origin of the phosphorites of the western continental shelf of India[J].Marine Geology,1988,84(1/2):105-110.
[6]Soudry D,Lewy Z.Microbially influenced formation of phosphate nodules and megafossil moulds (Negev,southern Israel)[J].Palaeogeography Palaeoclimatology Palaeoecology,1988,64(88):15-34.
[7]Berndmeyer C,Birgel D,Brunner B,et al.The influence of bacterial activity on phosphorite formation in the Miocene Monterey Formation,California[J].Palaeogeography Palaeoclimatology Palaeoecology,2012,317(5):171-181.
[8]Arning E T,Birgel D,Brunne B,et al.Bacterial formation of phosphatic laminites off Peru[J].Geobiology,2009,7(3):295-307.
[9]Bailey J V,Joye S B,Kalanetra K M,et al.Evidence of giant sulphur bacteria in Neoproterozoic phosphorites[J].Nature,2007,445(7124):198-201.
[10]Reimers C E,Ruttenberg K C,Canfield D E,et al.Porewater pH and authigenic phases in the upper most sediments of the Santa Barbara Basin[J].Geochimica et Cosmochimica Acta,1996,60(21):4037-4057.
[11]Eric E H,Peir K P,Cole T E.Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation,Michigan,USA[J].Sedimentary Geology,2015,319:24-39.
[12]Westall F.The nature of fossil bacteria:A guide to the search for extraterrestrial life[J].Journal of Geophysical Research,1999,104(E7):16437-16451.
[13]Yang Hao,Wang Yongbiao,Chen Lin,et al.Calci-Microbialite as a kind of potential hydrocarbon source rock and its geomicrobiological processes[J].Earth Science:Journal of China University of Geosciences,2007,32(6):797-802.
杨浩,王永标,陈林,等.地球微生物过程与潜在烃源岩的形成:钙质微生物岩[J].地球科学:中国地质大学学报,2007,32(6):797-802.
[14]Wang Jiasheng,Wang Yongbiao,Li Qing.Potential relationship between extremophiles and hydrocarbon resources in marine extreme environment[J].Earth Science:Journal of China University of Geosciences,2007,32(6):781-788.
王家生,王永标,李清.海洋极端环境微生物活动与油气资源关系[J].地球科学:中国地质大学学报,2007,32(6):781-788.
[15]Zhang Shuichang,Lu Songnian.Molecular fossils derived from marine palaeobacteria[J].Earth Science:Journal of China University of Geosciences,1993,18(4):381-392.
张水昌,卢松年.海洋古细菌分子化石[J].地球科学:中国地质大学学报,1993,18(4):381-392.
[16]Wang Wanchun,Tao Mingxin.Geomicrobial processes and petroleum resources[J].Geological Bulletin of China,2005,24(10/11):1022-1026.
王万春,陶明信.地质微生物作用与油气资源[J].地质通报,2005,24(10/11):1022-1026.
[17]Xie Xiaomin,Tenger,Qin Jinzhong,et al.Bactera-like fossil in the Early Cambrian siliceous shale from Zunyi,Guizhou,SW China[J].Acta Geologica Sinica,2013,87(1):20-28.
谢小敏,腾格尔,秦建中,等.贵州遵义寒武系底部硅质岩中细菌状化石的发现[J].地质学报,2013,87(1):20-28.
[18]Zhang Tianshan,Wu Kunyu,Yang Yang,et al.Evidence of microbial origin of organic matters of Niutitang shale gas reservoir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(2):1-10.
张廷山,伍坤宇,杨洋,等.牛蹄塘组页岩气储层有机质微生物来源的证据[J].西南石油大学学报:自然科学版,2015,37(2):1-10.
[19]Edwards D,Axe L,Parkes J,et al.Provenance and age of bacteria-like structures on mid-Palaeozoic plant fossils[J].International  Journal  of  Astrobiology,2006,5(2):109-142.
[20]Lu Yaoru,Zhang Feng’e,Yan Baorui,et al.Mechanism of karst development in sulphate rocks and its main geo-environmental impacts[J].Acta Geosciencentia Sinica,2001,23(1):1-6.
卢耀如,张凤娥,阎葆瑞,等.硫酸盐岩岩溶发育机理与有关地质环境效应[J].地球学报,2001,23(1):1-6.
[21]Wu Yasheng,Jiang Hongxia,Yang Wan,et al.Microbes and microbial rock hypoxic environment between Permian and Triassic[J].Science in China:Series D,2007,37(5):618-628.
[JP3]吴亚生,姜红霞,Yang Wan,等.二叠纪—三叠纪之交缺氧环境的微生物和微生物岩[J].中国科学:D辑,2007,37(5):618-628.
[22]Edoardo P,Maurice T.Bacterial fossils and microbial dolomite in Triassic stromatolites[J].Geology,2007,35(3):207-210.
[23]He Lei,Wang Yongbiao,Yang Hao,et al.Palaeogeography and microfacies characteristics of microbialites across the Permian-Triassic boundary in South China[J].Journal of Palaeogeography,2010,12(2):151-163.
何磊,王永标,杨浩,等.华南二叠纪—三叠纪之交微生物岩的古地理背景及沉积微相特征[J].古地理学报,2010,12(2):151-163.
[24]Zheng Jianjun.Sedimentary environment and coal accumulation pattern of Late Permian low sulfur coal in Guizhou[J].Coal Geology of China,2013,25(6):16-20.
郑建军.贵州晚二叠世低硫煤沉积环境及聚煤规律[J].中国煤炭地质,2013,25(6):16-20.
[25]Zhao Fuping.Cause and distribution of sulphurous content of the Late Permian coal in Guizhou Province[J].Coal Conversion,2007,30(3):16-20.
赵福平.贵州省晚二叠世煤中硫的分布特征及成因[J].煤炭转化,2007,30(3):16-20.
[26]Lei Jiajin,Ren Deyi,Tang Yuegang,et al.Ultra-high organic sulfur coal sulfur accumulation mode in Guiding[J].Chinese Science Bulletin,1994,39(15):1405-1408.
雷加锦,任德贻,唐跃刚,等.贵定超高有机硫煤硫的聚集模式[J].科学通报,1994,39(15):1405-1408.
[27]Lei Jiajin,Li Renwei,Cao Jie.The characteristics of black shale-hosted concretionary phosphates precipitation in Cambrian horizon on Yangtze platform[J].Scientia Geologica Sinica,2000,35(3):277-287.
雷加锦,李任伟,曹杰.上扬子区早寒武世黑色页岩磷结核特征及生化淀磷机制[J].地质科学,2000,35(3):277-287.
[28]Havey H R,Tuttle H J,Bell J T.Kinetics of phytoplankton decay during simulated sedimentation:Changes in biochemical composition and microbial activity under oxic and anoxic conditions[J].Geochim Cosmochim Acta,1995,59(16):3367-3377.
[29]Ding Anna,Hui Rongyao,Xia Yanqing.The formation of Type-D bacteridecompamo-rphinite and its hydrocarbon generating pattern[J].Chinese Journal of Geology,1997,32(2):221-228.
丁安娜,惠荣耀,夏燕青.D型菌解无定形体的形成及其生烃模式[J].地质科学,1997,32(2):221-228.
[30]Wang Tieguan,Zhong Ningning,Hou Dujie,et al.The effects of bacteria in hydrocarbon generation mechanism in Banqiao Sag[J].The Sciences of China:Series B,1995,25(8):883-889.
王铁冠,钟宁宁,侯读杰,等.细菌在板桥凹陷生烃机制中的作用[J].中国科学:B辑,1995,25(8):100-107.
[31]Zhang Bing,Wu Qingyu,Sheng Guoying,et al.Gas,oil and kerogen-like material generated by pyrolysis of Chlorella before and after bacterial degradation[J].Geochimica,1996,25(2):105-111.
章冰,吴庆余,盛国英,等.细菌降解前后小球藻热模拟生成的气、油和类干酪根[J].地球化学,1996,25(2):105-111.

[1] Wang Tao-li,Hao Ai-sheng,Chen Qing,Li Chao,Wang Qing-tao,Lu Hong,Liu Da-yong. The study of main factors controlling the development of Wufeng Formation andLongmaxi Formation organic-rich shales in the Yichang area,Middle Yangtze Region [J]. Natural Gas Geoscience, 2018, 29(5): 616-631.
[2] Cao Tao-tao,Deng Mo,Song Zhi-guang,Liu Guang-xiang,Huang Yan-ran,Andrew Stefan Hursthouse. Study on the effect of pyrite on the accumulation of shale oil and gas [J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
[3] Wang Bin, Zhang Qiang, Lü Fu-liang, Yang Tao-tao, Yang Zhi-li, Sun Guo-zhong, Wu Jing-wu, . Accumulations and resource prospects of natural gas of Cenozoic basins in the South China Sea [J]. Natural Gas Geoscience, 2018, 29(10): 1542-1552.
[4] Liang Jin-qiang,Fu Shao-ying,Chen Fang,Su Pi-bo,Shang Jiu-jing,Lu Hong-feng,Fang Yun-xin. Characteristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea [J]. Natural Gas Geoscience, 2017, 28(5): 761-770.
[5] Liao Ji-hua,Wang Hua,Gan Hua-jun,Sun Ming,Wang Ying,Cai Lu-lu,Guo Shuai,Guo Jia. High resolution sequence stratigraphy and prediction of subtle reservoir in the first section of Miocene Huangliu Formation, Dongfang area of Yinggehai Basin,South China Sea [J]. Natural Gas Geoscience, 2017, 28(2): 241-253.
[6] Guo Jia-jia, Sun Guo-qiang,Long Guo-hui,Guan Bin,Kang Jian,Xia Wei-min,Chen Bo,Shi Ji-an. Sedimentary diagenesis environment of the Lower Jurassic in Lenghu Ⅴ Tectonic Belt,Northern Qaidam Basin [J]. Natural Gas Geoscience, 2017, 28(12): 1839-1845.
[7] Ji Mo,Yang Hai-zhang,Zeng Qing-bo,Zhao Zhao,Wang Long-Ying,Sun Yu-hao. Structural analysis and its petroleum significance of detachment faults in Baiyun Sag,Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2017, 28(10): 1506-1514.
[8] Wang Long,Xie Xiao-jun,Liu Shi-xiang,Song Shuang,Wang Yi-bo,Tang Wu,Guo Jia,Sun Rui. Analysis of hydrocarbon accumulation and diversity  of the major basins in mid-southern part of the South China Sea [J]. Natural Gas Geoscience, 2017, 28(10): 1546-1554.
[9] Zhang Dao-jun,Zhang Ying-zhao,Shao Lei,Liu Xin-yu,Wang Ya-hui,He Xiao-hu,Cui Yu-chi. Sedimentary provenance in the Central Canyon of Qiongdongnan Basin in the northern South China Sea [J]. Natural Gas Geoscience, 2017, 28(10): 1574-1581.
[10] Er Chuang,Zhao Jing-zhou,Wang Rui,Zhang Jie,Yuan Ye,Shen Wu-xian. Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation,Ordos Basin,China [J]. Natural Gas Geoscience, 2016, 27(7): 1202-1214.
[11] He Jia-xiong,Zhang Wei,Lu Zhen-quan,Li Xiao-tang. Petroleum system and favorable exploration directions of the main marginal basins in the northern South China Sea [J]. Natural Gas Geoscience, 2016, 27(6): 943-959.
[12] He Sheng-lin,Zhang Hai-rong,Yang Dong,Wu Yi-xiong. Research on the CO2 gas logging evaluation technologyof HTHP reservoir in western South China Sea Basin [J]. Natural Gas Geoscience, 2016, 27(12): 2200-2206.
[13] SONG Huan-xin,WEN Zhi-gang,BAO Jian-ping. Geochemical Characteristics and Hydrocarbon Potential of the Coal in Muli Area of Qilian Mountain [J]. Natural Gas Geoscience, 2015, 26(9): 1803-1813.
[14] LIU Ruo-bing. Typical Features of the First Giant Shale Gas Field in China [J]. Natural Gas Geoscience, 2015, 26(8): 1488-1498.
[15] XIAO Xian-ming,WANG Mao-lin,WEI Qiang,TIAN Hui,PAN Lei,LI Teng-fei. Evaluation of Lower Paleozoic Shale with Shale Gas Prospect in South China [J]. Natural Gas Geoscience, 2015, 26(8): 1433-1445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!