Natural Gas Geoscience

Previous Articles     Next Articles

Fracture development characteristics and controlling factors based on 3D laser scanning technology:An outcrop case study of Suohan village,Kuqa foreland area,Tarim Basin

Zeng Qing-lu1,,Zhang Rong-hu1,Lu Wen-zhong1,Wang Bo1,Wang Chun-yang2   

  1. 1.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China;
    2.Korla Branch of East Geophysical Exploration Company,China National Petroleum Corp.,Korla 841001,China
  • Received:2016-11-17 Revised:2017-02-08 Online:2017-03-10 Published:2017-03-10

Abstract:

Fracture is of primary importance to the productivity of gas from many tight sandstone reservoirs in the Kuqa Depression,Tarim Basin,NW China,but the orientation,size and plane porosity of fractures in the subsurface are difficult to be measured directly.In this paper,by choosing a typical outcrop which has similar geological situation with the target stratum,on the basis of the conventional observation,systematic sampling and laboratory analysis,taking advantage of holographic laser scanning technology to obtain three-dimensional point cloud data with multi-level covering,matching with high-resolution digital photos and artificially measured information,the 3-D positions of natural fractures are extracted strictly in the data volume section.Furthermore,the fracture patterns and controlling factors are revealed more accurately with the fracture and reservoir model founded by computer simulation technology.It is founded that three groups of shear fractures are mainly developed with large inclination,short trace length and small spacing of normal distribution.The fracture aperture is related to the orientation with bimodal distribution of 0.2-0.4mm and 0.8-1mm.The fracture patterns provide a literal distribution of penetrating fracture zone and interlayer fracture zone with a single and a double set of advantage orientation respectively.The fractures in the former zone have greater trace length,greater spacing,and smaller surface density and run through the adjacent shale mostly while the latter is just the opposite.The plane porosity of fractures in 11 single sandbodies of different microfacies in the study section has been calculated quantitatively with a range of 0.026%-0.081% and an average of 0.05%.The sandbodies of underwater distributary channel are better than mouth bar and distal bar.It turned out that the size of fracture is controlled by lithology,bed thickness,maximum paleostress and rock composition with a good exponential relationship.

Key words: 3D laser scanning technology, Fracture, Development characteristics, Controlling factors, Outcrop, Kuqa foreland area

CLC Number: 

  • TE121.1

[1]Jia Chengzao,Pang Xiongqi.Research process and main development directions of deep hydrocarbon geological theories[J].Acta Petroleum Sinica,2015,36(12):1457-1469.[贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.]
[2]Zou Huayao,Zhao Chunming,Yin Zhijun,et al.Fracture-occurring outcrop model in Neoarchean crystalline rock-buried hill,Bohai Bay Basin,north China[J].Natural Gas Geoscience,2013,24(5):879-855.[邹华耀,赵春明,尹志军,等.渤海湾盆地新太古代结晶岩潜山裂缝发育的露头模型[J].天然气地球科学,2013,24(5):879-885.]
[3]Zhang Jinxuan,Jin Qiang.Characteristics of fractures and there hydrocarbon reservoir meanings for the Archean outcrop in Laiwu area,Shandong Province[J].Petroleum Geology & Experiment,2003,25(4):371-374.[张敬轩,金强.山东莱芜地区太古界露头裂缝特征及其油气储层意义[J].石油实验地质,2003,25(4):371-374.]
[4]Gao Xia,Xie Qingbin.Advances in identification and evaluation of fracture[J].Progress in Geophysics,2007,22(5):1460-1465.[高霞,谢庆宾.储层裂缝识别与评价方法新进展[J].地球物理学进展,2007,22(5):1460-1465.]
[5]Hencher S R.Characterizing discontinuities in naturally fractured outcrop analogues and rock core:The need to consider fracture development over geological time[J].Geological Society London Special Publications,2013,374(1):113-123.
[6]Watkins H,Bond C E,Healy D,et al.Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop[J].Journal of Structural Geology,2015,72:67-82.
[7]Ding Wenlong,Wang Xinghua,Hu Qiujia,et al.Progress in tight sandstone reservoir fracture reseach[J].Advance in Earth Science,2015,30(7):737-750.[丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.]
[8]Olariu M I,Ferguson J F,Aiken C L V,et al.Outcrop fracture characterization using terrestrial laser scanners:Deep-water Jackfork sandstone at Big Rock Quarry,Arkansas[J].Geosphere,2008,4(1):247-259.
[9]Wilson C E,Aydin A,Karimi-Fard M,et al.From outcrop to flow simulation:Constructing discrete frature models from a LIDAR survey[J].AAPG Bulletin,2011,95(11):1883-1905.
[10]Zhang Huiliang,Zhang Ronghu,Yang Haijun,et al.Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir:A Cretaceous example from Kuqa foreland basin[J].Acta Petrologica Sinica,2012,28 (3):827-835.[张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.]
[11]Zhang Huiliang,Zhang Ronghu,Yang Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashenjiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.[张惠良,张荣虎,杨海军,等.超深层裂缝—孔隙型致密砂岩储集层表征与评价——以库存前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.]
[12]Zeng Lianbo,Zhou Tianwei.Reservoir fracture distribution law of Kuqa Depression in Tarim Basin[J].Natural Gas Industry,2004,24(9):23-25.[曾联波,周天伟.塔里木盆地库车坳陷储层裂缝分布规律[J].天然气工业,2004,24(9):23-25.]
[13]Zhang Zhongpei,Wang Qingchen.Characteristics of joint and shear fractures and indication on regional stress field transfer[J].Science in China:Series D,2004,34(supplement I):63-73.[张仲培,王清晨.库车坳陷节理和剪切破裂发育特征及其对区域应力场转换的指示[J].中国科学:D辑,2004,34(增刊I):63-73.]
[14]Wang Zhenyu,Tao Xiayan,Fan Peng,et al.Distribution rule fractures and their effect on deliverability in sandstone reservoir,Dabei Gasfield,Kuqa foreland basin[J].Petroleum Geology and Recovery Efficiency,2014,21(2):51-56.[王振宇,陶夏妍,范鹏,等.库车坳陷大北气田砂岩气层裂缝分布规律及其对产能的影响[J].油气地质与采收率,2014,21(2):51-56.]
[15]Wang Ke,Dai Junsheng,Jia Kaifu,et al.Research on development regularity of structural fractures in sand-mud interbed of A Gasfield,Kuqa Depression[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(2):63-70.[王珂,戴俊生,贾开富,等.库车坳陷A气田砂泥岩互层构造裂缝发育规律[J].西南石油大学学报:自然科学版,2013,35(2):63-70.]
[16]Gong Lei,Zeng Lianbo,Du Yijing,et al.Influence of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Kuqa foreland basin[J].Journal of China University of Mining & Technology,2015,44(3):514-519.[巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响_—以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报,2015,44(3):514-519.]
[17]Hu Tao,Zhang Boqiao,Shu Zhiguo.The structural characters of a fan-delta penesequence of Cretaceous,Kuqa Depression[J].Journal of  Mineralogy and Petrology,2003,23(2):87-89.[胡涛,张柏桥,舒志国.库车坳陷白垩系一个扇三角洲准层序的结构特征[J].矿物岩石,2003,23(2):87-89.]
[18]Dai Shengshan,Li Tianfeng.The development and application prospects of ground three-dimensional laser scanning technology[J].Modern Surveying and mapping,2009,32(4):11-12.[戴升山,李田凤.地面三维激光扫描技术的发展与应用前景[J].现代测绘,2009,32(4):11-12.]
[19]Bellian J A,Kerans C,Jennette D C.Digital outcrop models:Applications of terrestrial scanningLIDAR technology in stratigraphic modeling[J].Journal of Sedimentary Research,2005,75(2):166-176.
[20]Janson X,Kerans C,Bellian J A,et al.Three-dimensional geological and synthetic model of Early Permian redeposited basinal carbonate deposits,Victorio Canyon,West Texas[J].AAPG Bulletin,2007,91(10):1405-1436.
[21]Zahm C K,Zahm L C,Bellian J A.Integrated fracture prediction using sequence stratigraphy within a carbonate fault damage zone,Texas,USA[J].Journal of Structural Geology,2010,32(9):1363-1374.
[22]Burton D,Dunlap D B,Wood L J,et al.Lidar intensity as a remote sensor of rock properties[J].Journal of Sedimentary Research,2011,81(5):339-347.
[23]Jacquemyn C.Diagenesis and Application of LiDAR in Reservoir Analogue Studies:Karstification in the Cretaceous Apulia Carbonate Platform Dolomitization in the Triassic Latemar Carbonate Buildup[D].Leuven:KU Leuven,2013:1-192..
[24]Slob S,Knapen B V,Hack R,et al.Method for Automated Discontinuity Analysis of Rock Slopes with Three-dimensional Laser Scanning[C].Proceedings of Transportation Research Board84 Annual Meeting,January 9-13,Washington DC,2005,(1913):187-194.
[25]Kurz T H,Buckley S J,Howell J A,et al.Geological outcrop modelling and interpretation using ground based hyperspectral and laser scanning data fusion[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Par+B8):1229-1234.
[26]Buckley S J,Howell J A,Enge H D,et al.Terrestrial laser scanning in geology:data acquisition,processing and accuracy considerations[J].Journal of the Geological Society,2008,165(3):625-638.
[27]Gischig V,Amann F,Moore J R,et al.Composite rock slope kinematics at the current randa instability,switzerland,based on remote sensing and numerical modeling[J].Engineering Geology,2011,118(1-2):37-53.
[28]Hodgetts D.Laser scanning and digital outcrop geology in the petroleum industry:A review[J].Marine & Petroleum Geology,2013,46(46):335-354.
[29]Liu Zhihong,Lu Huafu,Li Xijian,et al.Tectonic evolution of Kuqa rejuvenated foreland basin[J].Scientia Geologica Sinica,2000,35(4):482-492.[刘志宏,卢华复,李西建,等.库车再生前陆盆地的构造演化[J].地质科学,2000,35(4):482-492.]
[30]Rives T,Razack M,Petit J-P,et al.Joint spacing:Analogue and numerical simulations[J].Journal of Structural Geology,1992,14(8/9):925-937.
[31]Laubach S E.Fracture Patterns in Low-permeability-sandstone Gas Reservoir Rocks in the Rocky Mountain Region[C].SPE Rocky Mountain Regional// Low Permeability Reservoirs Symposium and Exhibition.Denver,CO,USA,15-17 April 1991:501-510.
[32]Feng Jianwei,Dai Junsheng,Liu Meili.Theoretical model about fracture porosity,permeability and stress field in the low-permeability sandstone[J].Journal of Geomechanics,2011,17(4):303-311.[冯建伟,戴俊生,刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报,2011,17(4):303-311.]
[33]Wang Xiaochang,Li Jun,Zhang Songyang,et al.Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J].Journal of China University of Petroleum,2011,35(2):51-56.[王晓畅,李军,张松扬,等.基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J].中国石油大学学报:自然科学版,2011,35(2):51-56.]
[34]Liu Xiaomei,Sun qinhua,Liu Jianxin,et al.Prediction of fracture porosity of carbonate reservoir with seismic attributes,multi-analysis and ANFIS[J].Well Logging Technology,2009,33(3):257-260.[刘晓梅,孙勤华,刘建新,等.利用地震属性、多元统计分析理论和ANFIS预测碳酸盐岩储层裂缝孔隙度[J].测井技术,2009,33(3):257-260.]
[35]Zhang Mingli,Tan Chengxuan,Tang Liangjie,et al.An analysis of the Mesozoie-Cenozoic tectonic stress field in Kuqa Depression,Tarim Basin[J].Acta Geoscientica Sinica,2004,25(6):615-619.[张明利,谭成轩,汤良杰,等.塔里木盆地库车坳陷中新生代构造应力场分析[J].地球学报,2004,25(6):615-619.]
[36]Aguilera R.Determination of subsurface distance between vertical parallel natural fractures based on core data[J].AAPG Bulletin,1988,72(7):845-851.
[37]Florez-Nio J M,Aydin A,Mavko G,et al.Fault and fracture systems in a fold and belt:An example from Bolivia[J].AAPG Bulletin,2005,89(4):471-493.
[38]Hennings P H,Olson J E,Thompson LB.Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs:An example from Wyoming[J].AAPG Bulletin,2000,84(6):830-849.
[39]Handin J,Hager Jr R V,Friedman F,et al.Experimental deformation of sedimentary rocks under confining pressure:Pore pressure tests[J].AAPG Bulletin,1963,47(5):717-755.
[40]Nelson R A.Geologic Analysis of Naturally Fractured Reservoir:Huston[M].Huston:Gulf Publishing,1985:320-321.
[41]Haiqing Wu,Pollard D D.Anexperimental-study of the relationship between joint spacing and layer thickness[J].Journal of Structural Geology,1995,17(6):887-905.

[1] Xu Jia-xiang,Ding Yun-hong,Yang Li-feng,Wang Zhen,Liu Zhe,Gao Rui. Analysis of stress interference and geometry of hydraulic fractures basedon the extended finite element method [J]. Natural Gas Geoscience, 2018, 29(9): 1356-1363.
[2] Zhao Wen-tao,Jing Tie-ya,Wu Bin,Zhou You,Xiong Xin. Controlling mechanism of faults on the preservation conditions of shale gas:A case study of Wufeng-Longmaxi Formations in Southeast Chongqing [J]. Natural Gas Geoscience, 2018, 29(9): 1333-1344.
[3] Zhu Li-wen,Wang Zhen-liang,Zhang Hong-hui. Analysis on the controlling factors of tight gas “sweet spot” ofShan2 sub-member in Wushenzhao area,Ordos Basin [J]. Natural Gas Geoscience, 2018, 29(8): 1085-1093.
[4] Yang Hai-jun,Zhang Rong-hu,Yang Xian-zhang,Wang Ke,Wang Jun-peng,Tang Yan-gang,Zhou Lu. Characteristics and reservoir improvement effect of structural fracturein ultra-deep tight sandstone reservoir:A case study of Keshen Gasfield,Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2018, 29(7): 942-950.
[5] Yang Zhi-feng,Zeng Jian-hui,Han Fei. Analysis of influencing factors on tight oil charging of the 7th member ofYanchang Formation  in southwestern Ordos Basin [J]. Natural Gas Geoscience, 2018, 29(7): 961-972.
[6] Zeng Fan-hui,Wang Xiao-wei,Guo Jian-chun,Zheng Ji-gang,Li Ya-zhou,Xiang Jian-hua. A productivity model of volume fractured horizontal wells in shale gas basedon the continuous succession pseudo-steady state method [J]. Natural Gas Geoscience, 2018, 29(7): 1051-1059.
[7] Zhu Wei-yao,Ma Dong-xu. Effective stress characteristics in shale and its effect on productivity [J]. Natural Gas Geoscience, 2018, 29(6): 845-852.
[8] Lü Zhi-kai,Jia Ai-lin,Tang Hai-fa,Liu Qun-ming,Wang Ze-long. Productivity evaluation and new understanding for horizontal wellof large scale tight sandstone gas [J]. Natural Gas Geoscience, 2018, 29(6): 873-879.
[9] Ni Xin-feng,Shen An-jiang,Wei Dong-xiao,Qiao Yu-ting,Wang Ying. Current hot topics and advances of carbonate sedimentology:AAPG 100 anniversary and 2017 annual meeting and exhibition [J]. Natural Gas Geoscience, 2018, 29(5): 729-742.
[10] Wang Guo-long,Du She-kuan. Clasolite reservoir characteristics and controlling factors of the 1st member of Permain Wutonggou Formation in Beisantai Uplift,Junggar Basin [J]. Natural Gas Geoscience, 2018, 29(5): 675-681.
[11] Hu Xiang-yang,Li Hong-tao,Shi Yun-qing,Xiao Kai-hua,Guo Yan-dong,Li Hao,Gao Jun. Sedimentary characteristics and reservoirs distribution from Penglaizhen Formation 3rd member in slope belt of Western Sichuan Depression:A case study of JP32 sandstone group from Shifang area [J]. Natural Gas Geoscience, 2018, 29(4): 468-480.
[12] Weng Ding-wei,Fu Hai-feng,Bao Li-qing,Xu Yun,Liang Tian-cheng,Zhang Jin. Polyaxial test research on in-plane perforation for horizontal wells [J]. Natural Gas Geoscience, 2018, 29(4): 572-578.
[13] Shi Wen-yang,Yao Yue-dong,Cheng Shi-qing,Shi Zhi-liang,Gao Min. Transient pressure behavior of acid fracturing oil wells in fractured low permeability carbonate reservoir [J]. Natural Gas Geoscience, 2018, 29(4): 586-596.
[14] Meng Fan-kun,Lei Qun,Xu Wei,He Dong-bo,Yan Hai-jun,Deng Hui. Production performance analysis for stress-sensitive and composite carbonate gas reservoirs [J]. Natural Gas Geoscience, 2018, 29(3): 429-436.
[15] Chen Yue,Ma Dong-min,Wu Sheng,Li Xin-hu,Fang Shi-yue,Guo Chen. Pore characteristics and main controlling factors of mud shalein coal-bearing strata of eastern Ordos Basin [J]. Natural Gas Geoscience, 2018, 29(2): 189-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!