Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (11): 1754-1767.doi: 10.11764/j.issn.1672-1926.2022.07.005

Previous Articles     Next Articles

Control of sedimentary environment and paleoproductivity on the formation of high-quality hydrocarbon source rocks in Dongying Sag, Bohai Bay Basin: Case study of the Shahejie Formation in Niuzhuang sag

Wei DUAN1(),Xiang ZENG1,Jingong CAI1(),Zheng LI2,Changxuan WANG2,Ru LIN3   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2.Research Institute of Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying 257015, China
    3.Lusheng Petroleum Development Co. Ltd. , Shengli Oilfield Company, SINOPEC, Dongying 257077, China
  • Received:2022-01-16 Revised:2022-07-03 Online:2022-11-10 Published:2022-11-23
  • Contact: Jingong CAI E-mail:duanwei@tongji.edu.cn;jgcai@tongji.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41972126);the China National Science and technology Major Project(2016ZX05006001-003)

Abstract:

The formation of high-quality source rocks is affected by many factors. It is of great significance to recognize the differences of controlling factors of different types of source rocks for accurately predicting the "sweet spot" of shale and improving the efficiency of unconventional oil and gas exploration. In this paper, we selected four source rocks (Es3z, Es3x, Es4cs, Es4cx) in the Paleogene Shahejie Formation, Niuzhuang Sag of Dongying Sag of Bohai Bay Basin, and carried out thin section, pyrolysis, and major and trace elements analyses to discuss the differences in controlling factors of source rock formation in each member. Es3x and Es4cs source rocks, which are developed in deep-water brackish and deep-water brackish environments, respectively, have higher TOC and are dominated by type Ⅱ1-Ⅰ aquatic organic matter. Es4cx and Es3z source rocks, which is deposited in shallow water brackish evaporation and shallow water brackish environments, respectively, have lower TOC and are dominated by typeⅢ-Ⅱ1 terrigenous organic matter. The level of paleoproductivity is as follows: Es4cs> Es4cx > Es3x > Es3z.Source rocks in each member have differences in organic matter, environment and productivity. The enrichment degree of organic matter is proportional to paleoproductivity, salinity and water depth, and is not affected by redox conditions. The high productivity is the key factor, when productivity is higher (Es4s and Es3x),the further enrichment of organic matter is obviously controlled by the environment: under the deep water and desalination environment (Es3x), salinity is the main restriction factor of the formation of organic matter; In the saltwater environment(Es4cs),the controlling effect of water depth is prominent. In the low productivity shallow water desalinated lake basin (Es3z) environment, the paleoproductivity, salinity and water depth have obvious control on organic matter development, which reflects the common control of multiple factors on organic matter and the differences of controlling factors on organic matter enrichment in source rocks of different strata. Therefore, in addition to productivity and preservation conditions, attention should also be paid to environmental factors such as salinity and water depth, as well as the coupling between multiple factors, which is of great significance to deepen the understanding of the development law of source rocks and guide unconventional oil and gas exploration.

Key words: Dongying Sag, Source rock, Sedimentary environment, Elemental buried flux, Paleoproductivity

CLC Number: 

  • TE122.1+13

Fig.1

Regional geological survey(a),(b) and structural well location map(c) and stratigraphic profile map(d) of Dongying Sag[8]"

Fig.2

Image of thin section of shale rock in Shahejie Formation, Dongying Sag[8]"

Fig.3

TOC, IH and IO parameter box diagram of every member in Shahejie Formation, Dongying Sag"

Table 1

Pyrolysis parameters of organic matter of every member in Shahejie Formation, Dongying Sag"

层位Es3zEs3xEs4csEs4cx
样品数量1648142866
TOC/%0.40~4.361.601.53~13.494.260.66~13.043.430.28~6.842.13
IH/(mg/g)53~586266.92135~733523.65119~682449.3331~337192.74
IO/(mg/g)10~36762.106~8327.175~31448.1418~471141.58
Tmax/℃388~446436.30430~523440.77409~449439.17371~442425.29

Fig.4

Kerogen types division of every member in Shahejie Formation, Dongying Sag"

Table 2

Partial element test data of Shahejie Formation in Dongying Sag"

层位Es3zEs3xEs4csEs4cx
样品数量1597841359
Al/%4.28~11.198.772.97~9.815.820.56~10.454.940.28~10.244.82
K/%0.86~2.722.000.58~2.271.180.11~2.501.120.07~3.361.49
P/%0.04~0.180.080.05~0.180.080.03~0.610.120.02~0.230.08
V/10-671.64~148.19104.8557.71~175.0399.2326.02~187.2997.4211.59~139.0068.42
Ni/10-619.16~63.0038.6021.81~105.6838.9210.38~133.3937.976.41~81.0127.73
Rb/10-647.95~143.49105.5933.82~149.3776.386.69~151.5268.883.09~146.3568.08
Sr/10-6227.14~903.56514.01443.92~5?032.171565.38432.20~10?609.901956.63406.02~17?888.292577.12
Zr/10-689.73~256.24139.1946.34~183.2587.1512.89~130.0370.9813.59~145.6072.56
Ba/10-6565.02~1?299.78781.98497.05~1?112.24680.64101.57~2?105.18566.6050.09~1?714.38438.60
La/10-627.16~54.2539.6414.11~48.1028.544.53~55.2225.283.16~45.3322.78
Ce/10-653.40~111.3379.8029.05~95.5857.308.59~110.5450.266.49~93.9346.35
B/10-64.24~53.7021.750.97~67.4719.441.85~193.5925.670.03~180.1446.37
Ga/10-638.00~74.6050.2125.50~56.5837.035.97~71.5628.672.86~51.3623.74

Fig.5

Composition characteristics of major and trace elements in every member of Shahejie Formation"

Fig.6

Palaeoenvironmental indexes of every member in Shahejie Formation, Dongying Sag"

Table 3

Paleoenvironmental index data of every member in Shahejie Formation"

层位Es3zEs3xEs4csEs4cx
B/Ga0.07~0.770.430.02~1.460.530.07~2.180.940.01~7.171.98
Sr/Ba0.28~1.150.660.07~3.912.140.07~7.863.890.22~14.345.55
Ce/La1.92~2.092.011.89~2.112.011.87~2.111.991.89~2.152.03
Ceamon-0.038~-0.012-0.026-0.038~-0.015-0.026-0.044~-0.013-0.028-0.051~-0.008-0.027
MoEF/UEF1.98~8.203.020.89~5.693.450.73~11.313.580.61~12.403.01
Rb/K44.38~61.8552.8249.73~76.2163.9550.51~73.1861.5037.05~52.9849.05
Zr/Al11.96~20.2416.0611.94~17.9615.2210.96~20.4215.5011.95~24.1819.40

Table 4

Parameters and calculation results of paleoproductivity of every member in Shahejie Formation, Dongying Sag"

层位样品数ρ/(g/cm3LSR/(cm/ka)BAR/[g/(cm2?ka)]MARPbio)/[mg/(cm2?ka)]
主要范围平均值
Es3z1642.489.1322.648.67~15.5612.32
Es3x812.4810.8026.7814.46~22.1418.39
Es4cs4282.4811.0027.2816.05~27.2925.93
Es4cx662.4811.0027.2811.97~25.0518.94

Fig.7

Relationship between organic matter TOC(I)、IH(II) and paleoenvironment、paleoproductivity of every member in Shahejie Formation, Dongying Sag"

Fig.8

Comprehensive map of organic pyrolysis and environmental characteristics of source rocks in Shahejie Formation, Dongying Sag"

1 ARTHUR M A, SAGEMAN B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences,1994,22(1):499⁃551.
2 INGALL E D, JAHNKE R A. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J]. Marine Geology,1997,139(1-4):219-229.
3 SAGEMAN B B,MURPHY A E,WERNE J P,et al.A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata,Middle-Upper Devonian,Appalachian Basin[J].Chemical Geology,2003,195:229-273.
4 孙中良,王芙蓉,侯宇光,等.盐湖页岩有机质富集主控因素及模式[J].地球科学,2020,45(4):1375-1387.
SUN Z L, WANG F R, HOU Y G, et al. Main controlling factors and modes of organic matter enrichment in salt lake shale[J]. Earth Science,2020,45(4):1375-1387.
5 张慧芳,吴欣松,王斌,等.陆相湖盆沉积有机质富集机理研究进展[J].沉积学报,2016,34(3):463-477.
ZHANG H F, WU X S, WANG B, et al. Research progress of the enrichment mechanism of sedimentary organics in lacustrine basin[J]. Acta Sedimentologica Sinica,2016,34(3):463-477.
6 潘仁芳,陈美玲,张超谟,等.济阳坳陷古近系沙河街组页岩有机质热演化特征[J].地学前缘,2016,23(4):277-283.
PAN R F, CHEN M L, ZHANG C M, et al. Characteristics of shale organic matter thermal evolution in Paleogene Shahejie Formation in Jiyang Depression[J]. Earth Science Frontiers,2016,23(4):277-283.
7 王居峰.济阳坳陷东营凹陷古近系沙河街组沉积相[J].古地理学报,2005,7(1):45-58.
WANG J F. Sedimentary facies of the Shahejie Formation of Paleogene in Dongying Sag, Jiyang Depression[J]. Journal of Palaeogeography,2005,7(1):45-58.
8 刘庆,曾翔,王学军,等.东营凹陷沙河街组沙三下—沙四上亚段泥页岩岩相与沉积环境的响应关系[J].海洋地质与第四纪地质,2017,37(3):147-156.
LIU Q, ZENG X, WANG X J, et al. Lithofacies of mudstone and shale deposits of the Es3 z-Es4 s Formation in Dongying Sag and their depositional environment[J]. Marine Geology & Quaternary Geology,2017,37(3):147-156.
9 逄淑伊,操应长,梁超.渤海湾盆地东营凹陷沙四上亚段—沙三下亚段岩相特征及沉积环境——以樊页1井为例[J].石油与天然气地质,2019,40(4):799-809.
PANG S Y, CAO Y C, LIANG C. Lithofacies characteristics and sedimentary environment of Es4 u and Es3 l: A case study of Well FY1 in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology,2019,40(4):799-809.
10 巢前,蔡进功,周祺盛,等.东营凹陷沙河街组Es3/Es4烃源岩热解特征及生烃差异研究[J].高校地质学报, 2017,23(4):688-696.
CHAO Q, CAI J G, ZHOU Q S, et al. Characteristics of rock-eval pyrolysis and hydrocarbon generation for source rocks of Eocene Shahejie third and fourth members, Dongying Depression[J]. Geological Journal of China Universities,2017,23(4):688-696.
11 朱光有,金强.烃源岩的非均质性研究——以东营凹陷牛38井为例[J].石油学报,2002,23(5):34-39,5.
ZHU G Y, JIN Q. Study on source rock heterogeneity: A case of Niu-38 Well in Dongying Depression[J]. Acta Petrolei Sinica,2002,23(5):34-39,5.
12 朱光有,金强.东营凹陷两套优质烃源岩层地质地球化学特征研究[J].沉积学报,2003,21(3):506-512.
ZHU G Y, JIN Q. Geochemical characteristics of two sets of excellent source rocks in Dongying Depression[J]. Acta Sedimentologyca Sinica,2003,21(3):506-512.
13 施兴华.东营凹陷古近系烃源岩非均质性特征及古生产力恢复[D].焦作:河南理工大学,2015.
SHI X H. Study on Heterogeneity Characteristics and Recovering the Palaeo⁃Productivity of Paleogene Source Rocks in Dongying Sag[D]. Jiaozuo: Henan Polytechnic University,2015.
14 吴靖,姜在兴,童金环,等.东营凹陷古近系沙河街组四段上亚段细粒沉积岩沉积环境及控制因素[J].石油学报,2016,37(4):464-473.
WU J, JIANG Z X, TONG J H, et al. Sedimentary environment and control factors of fine-grained sedimentary rocks in the upper fourth Member of Paleogene Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica,2016, 37(4):464-473.
15 张海峰,刘庆,张林晔,等.山东东营凹陷古近系沙河街组湖盆演化及烃源岩赋存相带[J].古地理学报,2005,7(3):383-397.
ZHANG H F, LIU Q, ZHANG L H, et al. Lacustrine basin evolution and favorable sedimentary facies belt for source rocks abounding in the Shahejie Formation of Paleogene in Dongying Sag, Shandong Province[J]. Journal of Palaeogeography,2005,7(3):383-397.
16 BEHAR F, BEAUMONT V, PENTEADO H L D B. Rock-Eval 6 technology: Performances and developments[J]. Oil & Gas Science and Technology,2001,56(2):111-134.
17 陈鹏宇.标准化值与评价值的评价功能研究——从相对评价的视角[J].乐山师范学院学报,2020,35(12):90-97.
CHEN P Y. Research on the evaluation function of normalization value and evaluation value: From the perspective of relative evaluation[J]. Journal of Leshan Normal University,2020,35(12):90-97.
18 TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication,1985.
19 曾翔,蔡进功,董哲,等.泥页岩沉积特征与生烃能力——以东营凹陷沙河街组三段中亚段—沙河街组四段上亚段为例[J].石油学报,2017,38(1):31-43.
ZENG X, CAI J G, DONG Z, et al. Sedimentary characteristics and hydrocarbon generation potential of mudstone and shale: A case study of middle submember of Member 3 and upper submember of Member 4 in Shahejie Formation in Dongying Sag[J]. Acta Petrolei Sinica,2017,38(1):31-43.
20 张美珍,李志明,秦建中,等.东营凹陷有效烃源岩成熟度评价[J].西安石油大学学报(自然科学版),2008,23(3): 12-16.
ZHANG M Z, LI Z M, QIN J Z, et al. Assessment of the thermal maturity of the effective hydrocarbon source rocks in Dongying Depression[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2008,23(3):12-16.
21 胡俊杰,马寅生,王宗秀,等.地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J].古地理学报,2017,19(3):480-490.
HU J J, MA Y S, WANG Z X, et al. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic revealed by geochemical records in northern margin of Qaidam Basin[J]. Journal of Palaeogeography,2017,19(3):480-490.
22 张健,张海华,陈树旺,等.松辽盆地北部上二叠统林西组地球化学特征及地质意义[J].吉林大学学报(地球科学版),2020,50(2):518-530.
ZHANG J, ZHANG H H, CHEN S W, et al. Geochemical characteristics and geological significance of Upper Permian Linxi Formation in northern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition),2020,50(2):518-530.
23 付金华,李士祥,徐黎明,等.鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J].石油勘探与开发,2018,45(6):936-946.
FU J H, LI S X, XU L M, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development,2018,45(6):936-946.
24 李克永,徐帅康,李文厚,等.渭河盆地固市凹陷新近系沉积古环境恢复[J].地质科学,2021,56(4):1134-1146.
LI K Y, XU S K, LI W H, et al. Restoration of Neogene sedimentary paleoenvironment in Gushi Sag, Weihe Basin[J]. Chinese Journal of Geology,2021,56(4):1134-1146.
25 张琴,梁峰,王红岩,等.页岩元素地球化学特征及古环境意义——以渝东南地区五峰—龙马溪组为例[J].中国矿业大学学报,2018,47(2):380-390.
ZHANG Q,LIANG F,WANG H Y,et al. Elements geochemistry and paleo sedimentary significance:A case study of the Wu-feng-Longmaxi shale in southeast Chongqing[J].Journal of China University of Mining & Technology,2018,47(2): 380-390.
26 MAO L J, MO D W, YANG J H, et al. Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China[J]. Quaternary International,2014,336:80-88.
27 TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on molyb-denum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology,2012, (324-325):46-58.
28 雷文智,陈冬霞,张芮,等.川中地区下侏罗统自流井组大二亚段陆相页岩层系岩性组合类型及其特征[J].地球科学,2021,46(10):3657-3672.
LEI W Z, CHEN D X, ZHANG R, et al. Lithological combination types and characteristics of continental shale strata in the second sub-member of Da’anzhai in central Sichuan[J]. Earth Science,2021,46(10):3657-3672.
29 YANG W, ZUO R S, CHEN D X, et al. Climate and tectonic-driven deposition of sandwiched continental shale units: New insights from petrology, geochemistry, and integrated provenance analyses (the western Sichuan subsiding Basin, Southwest China)[J]. International Journal of Coal Geology,2019,211,103227.
30 李艳芳,吕海刚,张瑜,等.四川盆地五峰组—龙马溪组页岩U—Mo协变模式与古海盆水体滞留程度的判识[J].地球化学,2015,44(2):109-116.
LI Y F, LV H G, ZHANG Y, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi formations in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica,2015,44(2):109-116.
31 郑一丁,雷裕红,张立强,等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学,2015,26(7):1395-1404.
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleo-sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015,26(7):1395-1404.
32 何庆,高键,董田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021, 39(3):686-703.
HE Q, GAO J, DONG T, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei Province[J]. Acta Sedimentologica Sinica,2021,39(3):686-703.
33 陈建芳.古海洋研究中的地球化学新指标[J].地球科学进展,2002,17(3):402-410.
CHEN J F. New geochemical proxies in paleoceanography studies[J]. Advance in Earth Sciences,2002,17(3):402-410.
34 BRUMSACK H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,232(2):344-361.
35 DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography and Paleoclimatology,1992,7(2):163-181.
36 万晓樵,刘文灿,李国彪,等.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质,2003,30(1): 36-47.
WAN X Q, LIU W C, LI G B, et al. Cretaceous black shale and dissolved oxygen content: A case study in Southern Tibet[J]. Geology in China,2003,30(1):36-47.
37 韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J].沉积与特提斯地质,2012,32(2):76-88.
WEI H Y. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology,2012,32(2):76-88.
38 王彤,朱筱敏,董艳蕾,等.陆相坳陷湖盆沉积对深时古气候的响应信号:以准噶尔盆地西北缘安集海河组为例[J].地学前缘,2021,28(1):60-76.
WANG T, ZHU X M, DONG Y L, et al. Signals of depositional response to the deep time paleoclimate in continental depression lakes: Insight from the Anjihaihe Formation in the northwestern Junggar Basin[J]. Earth Science Frontiers,2021,28(1):60-76.
39 沈俊,施张燕,冯庆来.古海洋生产力地球化学指标的研究[J].地质科技情报,2011,30(2):69-77.
SHEN J, SHI Z Y, FENG Q L. Review on geochemical proxies in paleo-productivity studies[J]. Bulletin of Geological Science and Technology,2011,30(2):69-77.
40 PROKOPENKO A A, HINNOV L A, WILLIAMS D F, et al. Orbital forcing of continental climate during the Pleistocene: A complete astronomically tuned climatic record from Lake Baikal, SE Siberia[J]. Quaternary Science Reviews,2006,25(23):3431-3457.
41 RAGUENEAU O, TRÉGUER P, LEYNAERT A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global & Planetary Change,2000,26(4):317-365.
42 黄振洋.几种常用氧化还原指标适用性讨论[J].河南科技,2021,40(33):104-106.
HUANG Z Y. Discussion on applicability of several commonly used redox indexes[J]. Henan Science and Technology,2021,40(33):104-106.
43 SCHOEPFER S D, SHEN J, WEI H Y, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews,2015,149(1):23-52.
44 MA K, HU S Y, WANG T S, et al. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2017,475:176-187.
45 甄园水,陈中红,黄伟,等.东营凹陷沙河街组泥页岩储集空间定量表征[J].断块油气田,2015,22(5):584-587,618.
ZHEN Y S, CHEN Z H, HUANG W, et al. Quantitative characterization of mud shale reservoir space of Shahejie Formation, Dongying Sag[J]. Fault-Block Oil & Gas Field,2015,22(5):584-587,618.
46 徐伟.东营凹陷沙河街组三段、四段高频旋回识别及其地质意义[M]. 武汉:中国地质大学,2011:66-70.
XU W. High-Frequency Cycles of the 3rd and 4th Member of Shahejie Formation in Dongying Depression and Its Geological Significance[M]. Wuhan: China University of Geoscience,2011,66-70.
47 夏刘文,曹剑,徐田武,等.盐湖生物发育特征及其烃源意义[J].地质论评,2017,63(6):1549-1562.
XIA L W, CAO J, XU T W, et al. Development characteristics of biologies in saline lake environments and their implications for hydrocarbon source[J]. Geological Review,2017,63(6):1549-1562.
48 高志前,樊太亮,李岩,等.塔里木盆地寒武系—奥陶系烃源岩发育模式及分布规律[J].现代地质,2006,20(1):69-76.
GAO Z Q, FAN T L, LI Y, et al. Development pattern and distribution rule of source rock of Cambrian-Ordovician in Tarim Basin[J]. Geoscience,2006,20(1):69-76.
49 刘庆,张林晔,沈忠民,等.东营凹陷湖相盆地类型演化与烃源岩发育[J].石油学报,2004,25(4):42-45.
LIU Q, ZHANG L H, SHEN Z M, et al. Evolution of lake-basin types and occurrence of hydrocarbon source rocks in Dongying Depression[J]. Acta Petrolei Sinica,2004,25(4):42-45.
[1] Jiayu ZHANG,Xiaofeng WANG,Jiang WU,Qingtao WANG,Yipu SUN,Yingzhong LU,Dongdong ZHANG,Wenhui LIU,Wanliu QIU. Hydrocarbon generation and expulsion characteristics and natural gas exploration potential of the Upper Paleozoic in southern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1433-1445.
[2] Liwen ZHANG,Chenjun WU,Daojun HUANG,Zhigang WEN,Weibo ZHAO,Yingyang XI,Hui ZHANG,Lu SUN,Huanxin SONG. Geochemical characteristics and sedimentary environment of Carboniferous Benxi Formation in eastern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1485-1498.
[3] Wuren XIE, Hua JIANG, Shiyu MA, Zecheng WANG, Tao HAO, Xiaodong FU, Nan SU, Wenzheng LI, Saijun WU, Xiaodan WANG, Rong LI. Sedimentary evolution characteristics and favorable exploration directions of Deyang-Anyue Rift within the Sichuan Basin in Late Sinian-Early Cambrian [J]. Natural Gas Geoscience, 2022, 33(8): 1240-1250.
[4] Haiqing HE,Shijun LIANG,Xujie GUO,Quansheng LUO,Jufeng WANG,Xuan CHEN,Fan YANG,Dongsheng XIAO,Hua ZHANG. New discoveries and exploration prospects of Middle and Lower Jurassic lithologic reservoirs in depression area of Turpan-Hami Basin [J]. Natural Gas Geoscience, 2022, 33(7): 1025-1035.
[5] Xuan LI,Junfeng ZHAO,Di WANG,Chao HU,Xudong ZHAO,Ke WANG,Bin GUAN,Hailong ZHANG. Discussion on depositional system and paleo-climate during the Early-Middle Jurassic in the western Qaidam Basin [J]. Natural Gas Geoscience, 2022, 33(7): 1060-1073.
[6] Xun GONG, Yanbin WANG, Yun YU. Geochemical characteristics and hydrocarbon generation characteristics of Upper Paleozoic coal measures source rocks in Huanghua Depression, Bohai Bay Basin: Case study of Dagang exploration area [J]. Natural Gas Geoscience, 2022, 33(6): 1013-1024.
[7] Zhongcheng LI, Zhidong BAO, Zhaosheng WEI, Guoyi ZHANG, Junjie LIU, Bo LIU. Comparison of gas sources in Xiaohelong area of Dehui Depression, Songliao Basin [J]. Natural Gas Geoscience, 2022, 33(6): 992-1000.
[8] Chenguang CUI,Hui ZHANG,Wenxiang LIU,Shifang LI,Yan LIU,Huanxin SONG,Chenjun WU,Zhigang WEN. Element geochemical characteristics of shale in the First Member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and Well M115 in Linxian County, Shanxi as examples [J]. Natural Gas Geoscience, 2022, 33(6): 1001-1012.
[9] Yong TANG, Menglin ZHENG, Xiatian WANG, Tao WANG, Zaibo XIE, Zhen QIN, Chenlu HEI, Hu CHENG, Yuan GAO, Huifei TAO. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin [J]. Natural Gas Geoscience, 2022, 33(5): 677-692.
[10] Jixian TIAN, Baoqiang JI, Xu ZENG, Yetong WANG, Yaoliang LI, Guoqiang SUN. Development characteristics and main controlling factors of deep clastic reservoir of Xiaganchaigou Formation in the northern margin of Qaidam Basin [J]. Natural Gas Geoscience, 2022, 33(5): 720-730.
[11] Wangpeng LI, Yi WANG, Yixiong QIAN, Zhibing SHAO, Chenglin CHU, Zhongpei ZHANG, Huili LI, Weili YANG. The first discovery of the ancient hydrocarbon source rocks in the Altun area, southeast margin of the Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(4): 533-547.
[12] Lei YAN, Guoqi WEI, Guangyou ZHU, Yongquan CHEN, Caiming LUO, Min YANG, Shan WANG, Dedao DU. Exploration field analysis and zone optimization of Sinian, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(4): 548-555.
[13] Pengwei WANG,Guangxiang LIU,Zhongbao LIU,Xiao CHEN,Peng LI,Beibei CAI. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(3): 431-440.
[14] Junping HUANG,Junfeng LIN,Yan ZHANG,Xinshe LIU,Zhurong CHEN,Xiangbo LI,Yating WANG. The organic geochemical characteristics of Lower Cambrian marine source rocks and its contribution to hydrocarbon accumulation in the southern margin of Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 461-471.
[15] Junzhang ZHU, Chuang SHI, Yuping HUANG, Xingye YANG, Yuling SHI, Xiaolong ZHANG. Analysis of effective gas source rocks of HZ26-6 oil and gas field in Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2022, 33(11): 1723-1733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!