Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (9): 1485-1498.doi: 10.11764/j.issn.1672-1926.2022.06.009

Previous Articles     Next Articles

Geochemical characteristics and sedimentary environment of Carboniferous Benxi Formation in eastern Ordos Basin

Liwen ZHANG1(),Chenjun WU1(),Daojun HUANG2,Zhigang WEN1,Weibo ZHAO2,Yingyang XI1,Hui ZHANG2,Lu SUN1,Huanxin SONG1   

  1. 1.Hubei Key Laboratory of Petroleum Geochemistry and Environment(Yangtze University),Wuhan 430100,China
    2.China Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2022-05-12 Revised:2022-06-16 Online:2022-09-10 Published:2022-09-09
  • Contact: Chenjun WU E-mail:894155316@qq.com;wcj627@163.com
  • Supported by:
    The Scientific Research Project of Changqing Oilfield Company, PetroChina(Technology 2020-151)

Abstract:

Benxi Formation of Carboniferous in the Ordos Basin has unconventional energy sources, and its sedimentary environment is complex and interactive. Therefore, through the analysis and testing of core samples of typical wells in eastern Ordos Basin, based on the observation of core samples,this study reveals the paleoclimate and the palaleobathymetry environment of shale in Benxi Formation, and discusses the control of sedimentary facies characteristics on the shale development. The results show that the salinity of the palaeobathymetry of Benxi Formation gradually decreases from smaller to bigger, and the salinity of the coal seam water at the top of Hutian Member to Jinci Member gradually changes from saline water to saline water reclamation; redox sensitive parameters(Th/U)of Benxi Formation decrease first and then increase from lower to upper. Hutian Member, Pangou Member and Jinci Member are anoxic environment, oxygen poor anoxic environment and weak redox environment, respectively. The study of ancient water depth(Rb/Zr)shows that the ancient water depth of Benxi Formation changes periodically from lower to upper, and then gradually back to lower again; CaO/(Al2O3+MgO), CIA and other paleoclimate indicators reflect that Benxi Formation has a hot and humid climate. We compared the mineral composition and lithologic combination characteristics of the mud shale under different sedimentary backgrounds of Benxi Formation in eastern Ordos Basin, and further divided the facies into swamp deposit, lagoon-tidal-flat-barrier island mixed sediments, and lagoon-tidal-flat-barrier island-swamp mixed sediments were developed in Hutian Member, Pangou Member and Jinci Member respectively.

Key words: Element geochemical, Shale, Benxi Formation, Sedimentary environment, Ordos Basin

CLC Number: 

  • TE122.1+13

Fig. 1

The location of the study area (a) and the sequence stratigraphic comprehensive column map(b) of the Benxi Formation in the Ordos Basin"

Table 1

Analysis and test results of element content of Benxi Formation in Well Q36"

编号层位样品岩性

TOC

/%

主量元素含量/%微量元素含量/10-6Sr/BaTh/URb/ZrCIA

CaO/(Al2O3

+MgO)

深度/mSiO2Al2O3K2OCaOMgOSrBaThURbZr
Q-16晋祠段2 801.43泥岩2.9156.4322.391.340.120.34170.56139.9818.52.9452.33119.471.226.30.4380.920.005
Q-152 805.6892.61.212.890.151.350.0464.9319.322.750.350.1723.933.367.820.0070.810.461
Q-142 810.0992.83.315.030.170.520.0547.9312.136.471.280.3375.143.955.050.0040.870.103
Q-132 813.37泥岩22.724.7222.20.440.070.1476.2791.921.6469.2811.63338.780.830.310.0340.960.003
Q-122 815.70泥岩7.2939.7824.550.880.780.28229.12163.7131.4371.8739.09327.351.40.440.1190.940.031
Q-112 819.10泥岩0.256.7622.712.520.090.5193.72183.7626.857.97140.93171.530.513.370.8220.880.004
Q-102 821.81泥岩1.9340.5824.231.570.10.37103.14196.6919.726.6776.4685.540.522.960.8940.920.004
Q-92 824.39泥岩8.532.1623.560.820.350.24145.88117.9819.4625.0435.1468.341.240.780.5140.940.015
Q-8畔沟段2 826.36泥岩0.3559.624.721.610.530.48103.77182.6619.742.9571.64107.270.576.680.6680.910.021
Q-72 829.24泥岩0.3460.9124.481.550.380.42143.36174.4319.342.7568.76126.550.827.030.5430.910.015
Q-62 831.62泥岩1.7951.120.781.330.50.591.48162.7212.762.3256.2595.380.565.490.590.910.023
Q-52 834.25泥岩5.1644.4835.551.910.150.6178.98238.6824.288.585.74147.580.752.850.5810.930.004
Q-4湖田段2 835.40泥岩0.440.7933.910.330.160.14402.9458.3646.0612.792.39334.926.93.60.0070.980.005
Q-32 836.70泥岩0.3244.8237.290.410.070.2162.4541.0161.5717.596.07405.593.963.50.0150.980.002
Q-22 838.16泥岩0.5741.0434.231.250.210.45165.7873.8661.7813.5928.6324.032.244.550.0880.950.006
Q-12 840.81泥岩0.2847.9829.634.860.582.86283.72271.96138.6752.04119.58553.891.042.660.2160.830.018

Fig.2

The cores and thin sections of typical shale facies in Benxi Formation in eastern Ordos Basin"

Fig.3

Vertical distribution characteristics of element geochemical parameters of mud shale in Well Q36"

Fig.4

Discrimination of salinity in Benxi Formation mud shale"

Fig.5

Discrimination of redox in Benxi Formation mud shale"

Fig. 6

Lithologic assemblage, mineral content and connected wells sedimentary facies"

Fig. 7

Comparison of quartz content (a) and clay content (b) in key profiles"

Table 2

Geochemical indicators and mineral content of key wells and profile"

剖面/井地层石英含量/%黏土总量/%Sr/BaTh/URb/Zr
Q36井晋祠段6.9~4727.6(8)43.1~87.558.1(8)0.51~1.240.95(6)0.31~6.32.36(6)0.03~0.890.47(6)
畔沟段1.2~5231.8(4)47~97.365.4(4)0.56~0.820.68(4)2.85~7.035.51(4)0.54~0.670.6(4)
湖田段00(4)87.9~99.293.2(4)1.04~6.93.54(4)2.66~3.63.58(4)0.01~0.220.08(4)
M115井晋祠段8~5730.6(11)32.3~88.559.9(11)0.64~2.51.68(5)1.98~4.973.43(5)0.16~0.960.59(5)
畔沟段8.6~37.124.9(7)61.8~90.772.2(7)1.13~2.211.59(6)1.55~3.312.57(6)0.34~0.820.46(6)
湖田段2.3~48.612.8(7)44.1~9679.1(7)1.17~2.871.71(7)1.69~4.432.86(7)0.1~0.820.3(7)
招贤剖面晋祠段32~69.554.3(12)29~56.941.5(12)0.09~1.610.97(12)3.21~6.784.54(12)0.37~1.010.58(12)
畔沟段66.166.1(1)31.431.4(1)0.750.75(1)1.151.15(1)0.070.07(1)
湖田段1.4~6.94.2(2)31.6~97.815.3(2)2.18~5.153.66(2)2.47~3.022.75(2)0.06~0.160.11(2)

Fig. 8

Histogram of the distribution of sedimentary facies and TOC of Benxi Formation mud shole"

Fig.9

The depositional models of Benxi Formation in Ordos Basin"

1 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
ZOU C N, ZHAO Q, DONG D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J].Natural Gas Geoscience, 2017, 28 (12): 1781-1796.
2 刘灿. 山西兴县石炭系本溪组煤岩特征及成煤环境[D]. 成都: 成都理工大学, 2020: 64-66.
LIU C. Study on the Coals Characteristics and Coal-forming Environment of Benxi Formation Coals in Carboniferous from Xingxian in Shanxi Province[D]. Chengdu: Chengdu University of Technology, 2020: 64-66.
3 郭小军. 鄂尔多斯盆地石炭—二叠纪聚煤规律与煤层气勘探有利区优选[D]. 北京: 中国石油大学(北京), 2010: 71-93.
GUO X J. Coal Accumulation and Target Optimization for Exploration of CBM in Permo-Carboniferous, Ordos Basin[D]. Beijing: China University of Petroleum(Beijing),2010:71-93.
4 周伟. 鄂尔多斯盆地东缘北部含煤岩系沉积相与聚煤规律[D]. 北京: 中国地质大学(北京), 2012: 37-40.
ZHOU W. Sedimentary Facies of the Coal Measures in Northeastern Margin of Ordos Basin and Coal Accumulation Mechanism[D].Beijing:China University of Geosciences(Beijing),2012: 37-40.
5 郭德运. 鄂尔多斯盆地东部上古生界沉积体系研究[D]. 西安: 西北大学, 2009: 37-79.
GUO D Y. The Study of Sedimentary System of Upper Paleozoic in East Ordos Basin[D]. Xi’an: Northwest University, 2009: 37-79.
6 周进松, 赵谦平, 银晓, 等. 鄂尔多斯盆地东南部石炭系本溪组储层沉积特征及天然气勘探方向[J]. 天然气勘探与开发, 2012, 35(2): 13-16.
ZHOU J S, ZHAO Q P, YIN X, et al. Sedimentary characteristics of Carboniferous Benxi Formation southeastern Ordos Basin[J]. Natural Gas Exploration and Development, 2012, 35(2): 13-16.
7 李云, 张建伍, 李晶, 等. 鄂尔多斯盆地东南部石炭系本溪组沉积微相特征及其对天然气富集控制作用[J]. 西北地质, 2014, 47(2): 216-222.
LI Y, ZHANG J W, LI J, et al. A study on sedimentary microfacies of Benxi Formation and its controlling effect on gas enrichment in Yangchang district of Ordos Basin[J]. Northwe-stern Geology, 2014, 47(2): 216-222.
8 于兴河, 王香增, 王念喜, 等. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征[J]. 古地理学报, 2017, 19(6): 935-954.
YU X H, WANG X Z, WANG N X, et al. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sandbody in the Upper Paleozoic in southeastern Ordos Basin[J].Journal of Palaeogeography(Chinese Edition), 2017, 19(6): 935-945.
9 林进, 李云, 何剑. 鄂尔多斯延长探区本溪组物源及沉积体系分析[J]. 中国地质, 2013, 40(5): 1542-1551.
LIN J, LI Y, HE J. An analysis of the source and the sedimentary system of the Carboniferous Benxi Formation in Yanchang area of Ordos Basin[J]. Geology in China,2013,40(5): 1542-1551.
10 贾浪波, 钟大康, 孙海涛, 等. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J]. 沉积学报, 2019, 37(5): 1087-1103.
JIA L B, ZHONG D K, SUN H T, et al. Sedimentary provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1087-1103.
11 郑葆英,杨铁汾,刘联群, 等. 鄂尔多斯盆地中部石炭系层序地层分析[J]. 地球科学与环境学报, 2000, 22(1): 35-37.
ZHENG B Y, YANG T F, LIU L Q, et al. Sequence stratigraphy of Carboniferous in the central area of Ordos Basin[J]. Journal of Earth Sciences and Environment, 2000, 22(1): 35-37.
12 吴鹏. 鄂尔多斯盆地东南部上古生界煤系地层层序地层学研究[D]. 北京: 中国地质大学(北京), 2013: 37-50.
WU P. Study on Sequence Stratigraphy of Upper Paleozoic Coal-bearing Formation in the Southeastern Part of Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2013: 37-50.
13 董江浪. 鄂尔多斯盆地东缘佳县—吴堡深部煤系层序地层分析及聚煤规律研究[D]. 西安: 西安科技大学, 2020: 29-36.
DONG J L. Sequence Stratigraphic Analysis of Jiaxian-Wubu Deep Coal-Bearing Strata and Coal Accumulation Law in the Eastern Margin of Ordos Basin[D]. Xi’an: Xi’an University of Science and Technology, 2020: 29-36.
14 刘新昕. 鄂尔多斯盆地东部石炭系本溪组沉积环境研究[D]. 成都: 成都理工大学, 2019: 8-37.
LIU X X. Study on the Sedimentary Environment of Upper Carboniferous Benxi Formation of Eastern Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2019: 8-37.
15 侯云东, 陈安清, 赵伟波, 等. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境[J]. 成都理工大学学报(自然科学版), 2018, 45(4): 393-401.
HOU Y D, CHEN A Q, ZHAO W B, et al. Analysis on the depositional environment of Carboniferous Benxi Formation tidal-delta sand body complex, Ordos Basin,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(4): 393-401.
16 陈全红, 李克永, 张道锋, 等. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系[J]. 中国地质, 2010, 37(2): 421-429.
CHEN Q H, LI K Y, ZHANG D F, et al. The relationship between fan delta and hydrocarbon accumulation in Benxi-Taiyuan Formation, Ordos Basin[J]. Geology in China,2010,37(2):421-429.
17 郭英海, 刘焕杰, 权彪, 等. 鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报, 1998, 16(3): 44-51.
GUO Y H, LIU H J, QUAN B, et al. Late Paleozoic sedimentary system and paleogeographic evolution of Ordos Area[J]. Acta Sedimentologica Sinica, 1998, 16(3): 44-51.
18 刘春雷. 鄂尔多斯盆地东部本溪组沉积体系研究[D]. 西安: 西北大学, 2012: 58-68.
LIU C L. Sedimentary System Research of Benxi Formation in East Ordos Basin[D]. Xi'an: Northwest University, 2012: 58-68.
19 苏东旭, 于兴河, 李胜利, 等. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律[J]. 天然气工业, 2017, 37(9): 48-56.
SU D X, YU X H, LI S L, et al. Sedimentary characteristics and distribution laws of Benxi Fm barrier coast in SE Ordos Basin[J]. Natural Gas Industry, 2017, 37(9): 48-56.
20 李文厚, 张倩, 李克永, 等. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报, 2021, 23(1): 39-52.
LI W H, ZHANG Q, LI K Y, et al. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent area[J]. Journal of Palaeogeography, 2021, 23(1): 39-52.
21 冯娟萍, 欧阳征健, 陈全红, 等. 鄂尔多斯盆地及周缘地区上石炭统沉积特征[J]. 古地理学报, 2021, 23(1): 53-64.
FENG J P, OUYANG Z J, CHEN Q H, et al. Sedimentary characteristics of the Upper Carboniferous in Ordos Basin and its adjacent areas[J].Journal of Palaeogeography,2021,23(1): 53-64.
22 冯子齐. 鄂尔多斯盆地东南部山西组海陆过渡相页岩储层特征与评价[D]. 北京: 中国地质大学(北京), 2014: 10-18.
FENG Z Q. Characteristics and Evaluation of the Organic-rich Shale of Shanxi Formation, Southeast in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing),2014:10-18.
23 郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2): 293-320.
GUO Y Q, LI W H. GUO B C, et al. Sedimentary system and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320.
24 苏东旭. 鄂尔多斯盆地东南部石炭系本溪组沉积体系研究[D]. 北京: 中国地质大学(北京), 2015: 21-34.
SU D X. Study on Sedimentary System of the Benxi Formation in the Southeastern Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2015: 21-34.
25 刘桂珍, 高伟, 尉加盛, 等. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382-392.
LIU G Z, GAO W, WEI J S, et al. Sedimentary characteristics and sequence stratigraphy in amixed silicilastic-carbonate depositional system: Case study of Benxi Formation in Gaoqiao area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(3): 382-392.
26 田景春,张翔. 沉积地球化学: 卷一[M]. 北京: 地质出版社, 2016: 56-83.
TIAN J C, ZHANG X. Sedimentary Geochemistry:Volume 1[M]. Beijing: Geological Publishing House, 2016: 56-83.
27 COUCH E L. Calculation of paleosalinities from boron and clay mineral data[J]. AAPG Bulletin, 1971, 55(10): 1829-1837.
28 师晶, 黄文辉, 吕晨航, 等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报, 2018, 39(8): 876-889.
SHI J, HUANG W H, LÜ C H, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889.
29 邓宏文, 钱凯. 试论湖相泥质岩的地球化学二分性[J]. 石油与天然气地质, 1993, 14(2): 85-97.
DENG H W, QIAN K. Geochemical binary division character of lacustrine argillite[J]. Oil & Gas Geology,1993,14(2):85-97.
30 孙彩蓉. 鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D]. 北京: 中国地质大学(北京), 2017: 33-35.
SUN C R. Study on Sedimentary Facies and Geochemistry of Trace Elements of Carboniferous-Permian Shale in the Eastern Ordos Basin[D].Beijing: China University of Geosciences(Bei-jing), 2017: 33-35.
31 ZHANG L F, DONG D Z, QIU Z, et al. Sedimentology and geochemistry of Carboniferous-Permian marine-continental transitional shales in the eastern Ordos Basin, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571: 110389.
32 腾格尔. 海相地层元素、碳氧同位素分布与沉积环境和烃源岩发育关系——以鄂尔多斯盆地为例[D]. 兰州: 中国科学院研究生院/中国科学院兰州地质研究所,2004:42-98.
TENGER. The Distribution of Elements, Carbon and Oxygen Isotopes on Marine Strata and Environmental Correlation between they and Hydrocarbon Source Rocks Formation:An Example from Ordovician Basin, China[D]. Lanzhou: Graduate University of Chinese Academy of Sciences/Lanzhou Institute of Geology, Chinese Academy of Sciences, 2004: 42-98.
33 GUO Q, SHIELD G A, LIU C, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,254(12):194-216.
34 陈晶, 黄文辉, 何明倩. 鄂尔多斯盆地东南部本溪组—下石盒子组泥岩元素地球化学特征[J]. 现代地质, 2018, 32(2): 240-250.
CHEN J, HUANG W H, HE M Q. Elemental geochemistry characteristics of mudstones from Benxi Formation to Lower Shihezi Formation in southeastern Ordos Basin[J]. Geoscience, 2018, 32(2): 240-250.
35 王艳鹏. 华北南缘宜阳地区中二叠统—下三叠统沉积和物源特征及其对盆山系统演化的指示[D]. 焦作: 河南理工大学, 2019: 91-93.
WANG Y P. Sedimentary and Provenance Characteristics of the Middle Permian-Lower Triassicin the Yiyang Area, Southern Margin of the North China and Its Implications for the Evolution of the Basin-mountain System[D]. Jiaozuo: Henan Polytechnic University, 2019: 91-93.
36 崔晨光, 张辉, 刘文香, 等. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征——以山西临县招贤剖面和M115井为例[J]. 天然气地球科学,2022,33(6): 1001-1012.
CUI C G, ZHANG H, LIU W X, et al. Element geochemical characteristics of shale in the first member of Benxi Formation in eastern Ordos Basin: Take Zhaoxian section and M115 Well in Linxian County, Shanxi as examples[J]. Natural Gas Geoscience,2022,33(6): 1001-1012.
37 郑一丁, 雷裕红, 张立强, 等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学, 2015, 26(7): 1395-1404.
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleo-sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404.
[1] Jiayu ZHANG,Xiaofeng WANG,Jiang WU,Qingtao WANG,Yipu SUN,Yingzhong LU,Dongdong ZHANG,Wenhui LIU,Wanliu QIU. Hydrocarbon generation and expulsion characteristics and natural gas exploration potential of the Upper Paleozoic in southern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1433-1445.
[2] Jie WANG,Huichong JIA,Xiao SUN,Cheng TAO,Yi ZHANG,Liangbang MA,Fubin WANG,Haijian JIANG. Comprehensive evaluation on origin and source of natural gas in the Paleozoic in Fuxian area, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(9): 1476-1484.
[3] Dianying GENG, Zhaobiao YANG, Geng LI, Tongsheng YI, Bingren JIANG, Jun JIN. Physical properties and gas-bearing properties of marine shale gas reservoirs in the Lower Carboniferous Jiusi Formation-Xiangbai Formation in Well Longcan 1, Weining area, Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(8): 1226-1239.
[4] Zhenheng YANG, Ming FAN, Cheng TAO, Longfei LU, Menhui QIAN. Carbon isotope fractionation characteristics and significance of black shale desorded gas from Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(8): 1295-1303.
[5] Zhaotong SUN, Honggang XIN, Chengfu LÜ, Shengbin FENG, Qianshan ZHOU, Weidong DAN, Ying ZHANG, Xue GAO, Zhaoqing DANG. Occurrence states and organic geochemical characteristics of shale-type shale oil from Chang 73 sub-member in the Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(8): 1304-1318.
[6] Dongtao ZHANG, Zantong HU, Ye HE, Yalei YAN. Analysis on the difficulties and countermeasures of geosteering of horizontal wells in Zhaotong National Shale Gas Demonstration Zone,southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(8): 1354-1362.
[7] Xuan LI,Junfeng ZHAO,Di WANG,Chao HU,Xudong ZHAO,Ke WANG,Bin GUAN,Hailong ZHANG. Discussion on depositional system and paleo-climate during the Early-Middle Jurassic in the western Qaidam Basin [J]. Natural Gas Geoscience, 2022, 33(7): 1060-1073.
[8] Jianhua HE,Yong LI,Hucheng DENG,Jianming TANG,Yuanyuan WANG. Quantitative evaluation and influencing factors analysis of the brittleness of deep shale reservoir based on multiple rock mechanics experiments [J]. Natural Gas Geoscience, 2022, 33(7): 1102-1116.
[9] Jun MA,Dazhi FANG,Peixian ZHANG,Hongtao GU,Chunfeng HU,Bi LU,Yiyan CHENG,Quanfang GAO,Jingya WAN. Characteristics and genesis of shale fractures in Wufeng-Longmaxi formations of Yangchungou structural belt in Southeast Chongqing [J]. Natural Gas Geoscience, 2022, 33(7): 1117-1131.
[10] Lijun GAO,Peng WU,Xuefeng SHI,Yong LI,Jiandong PANG,Tiemei YANG. Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type [J]. Natural Gas Geoscience, 2022, 33(7): 1132-1143.
[11] Wen ZHANG,Jianjun WU,Xiangjun LIU,Bing LI,Lixi LIANG,Jian XIONG. Mechanical characteristics and failure mode of marine-continent transitional facies shale:Case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China [J]. Natural Gas Geoscience, 2022, 33(7): 1144-1154.
[12] Liang XIONG, Zhenheng YANG, Baojian SHEN, Longfei LU, Limin WEI, Ruyue WANG, Heqing PANG. Micro reservoir space characteristics and significance of deep shale gas in Wufeng-Longmaxi formations in Weirong area, South Sichuan [J]. Natural Gas Geoscience, 2022, 33(6): 860-872.
[13] Wei LI, Haijie ZHANG, Tongtong LUO, Wei WU, Lin JIANG, Zheng ZHONG, Yuqiang JIANG, Yonghong FU, Guangyin CAI. Influence of micro pore structure of shale reservoir on shale gas occurrence in western Chongqing [J]. Natural Gas Geoscience, 2022, 33(6): 873-885.
[14] Linjie FENG, Yuqiang JIANG, Fuli WU, Yu WU, Demin LIANG. Genesis and gas control mechanism of positive low-amplitude structure in the Ma51+2 sub-member in western Yan'an, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(6): 944-954.
[15] Jia CHEN, Congjun FENG, Tianjun YU, Gang CHEN, Mingming TANG, Mengsi SUN. The lower limit of physical properties of tight reservoir in He 8 Member of Y113-Y133 gas well area, Yanchang Gas Field, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(6): 955-966.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[4] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[5] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[6] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .
[7] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[8] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[9] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .
[10] . APPLICATION AND PROBLEMS OF AVO TECHNIQUE IN NATURAL GAS HYDRATES INVESTIGATION[J]. Natural Gas Geoscience, 2005, 16(1): 123 -126 .