Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (10): 1661-1674.doi: 10.11764/j.issn.1672-1926.2022.04.016

Previous Articles     Next Articles

Formation conditions and the main controlling factors for the enrichment of shale gas of Shanxi Formation in the southeast of Ordos Basin

Ke WANG1,2,3(),Yuanyuan WANG1,2,Fengqin WANG1,2   

  1. 1.School of Earth Sciences and Engineering,Xi’an Shiyou University,Xi’an 710065,China
    2.Key Laboratory of Shaanxi Province for Petroleum Accumulation Geology,Xi’an 710065,China
    3.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
  • Received:2022-03-16 Revised:2022-04-25 Online:2022-10-20 Published:2022-09-28
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05039001);the Open Fund Project of the State key Laboratory of Organic Geochemistry, China(SKLOG-201902)

Abstract:

Based on the data of drilling, logging, testing and shale sample analysis, and on the basis of dissecting the geological characteristics of typical shale gas wells, the relationship between reservoir-forming factors and shale gas enrichment is deeply analyzed, and the controlling factors of shale gas enrichment are summarized. The results show that the shale of marine-continental transitional facies is mainly developed in Shanxi Formation in the southeast of Ordos Basin, which has strong heterogeneity, mainly reflected in the rapid spatial change of shale organic matter, physical properties and other parameters. The shale widely distributed in Shanxi Formation has a high content of organic carbon(TOC), with an average of 2.24%.The kerogen type is mainly type Ⅲ, and the average value of RO is 2.48%, which is in the high mature-overmature stage and is a high quality source rock.The rock composition is rich in clay(40.5%-88.5%),mainly composed of illite-mongolian mixed layer and kaolinite, and its relatively high specific surface area is beneficial to improve the gas adsorption capacity of shale. Thin sandstone with thickness less than 3 m interbeds are widely distributed in Shanxi formation with good physical conditions (average porosity 3.37%, average permeability 0.1×10-3 μm2). The natural gas generated by shale can be transported to these sandstone interlayers (laminae) in a short distance, which is beneficial to improve the gas-bearing property of shale. The gas-bearing property of Shanxi Formation in the study area is affected by different lithologic assemblages. The gas-bearing property of thick mudstone-coal assemblage of Shan2 is the best, and the gas content of more than 80% of the samples exceeds 1 m3/t. It is considered that the high thermal evolution degree of shale, special marine-continental transitional facies reservoir conditions and good preservation conditions are the main factors affecting the enrichment of shale gas in the study area. It makes the shale gas of Shanxi Formation in the southeast of Ordos Basin have certain potential for exploration and development, and delineates the enrichment targets of shale gas in Zichang-Yan'an-Fuxian and Yichuan areas.

Key words: Shale gas, Enrichment controlling factors, Marine-continental transitional, Adsorption, Sand interlayer

CLC Number: 

  • TE122.2

Fig. 1

Isoline map and stratigraphic column map of mud shale of Shanxi Formation in the study area"

Fig.2

TOC content diagram of shale gas of Shanxi Formation in Wells YQ56, YC96 and Y2156"

Fig.3

Plane distribution of TOC content in mud shale of Shan2 Member in the study area"

Table 1

Classification table of organic types of mud shale of Shanxi Formation in the study area"

有机质类型IH评价标准/(mgHC/gTOCIH样品所占百分数/%D评价标准/%D样品所占百分数/%
最终评价结果III型III型
I 型(腐泥型)>7000>70.01.85
II1型(腐殖—腐泥型)700~3501.8570.0~30.011.11
II2(腐泥—腐殖型)350~150(不含350)3.730.0~10.0(不含30.0)9.26
III 型(腐殖型)<15094.44<10.077.78

Fig.4

Isoline map of mud shale RO of Shanxi Formation in the study area"

Fig.5

Triangular diagram of mineral composition of Shanxi Formation, Wufeng-Longmaxi formations and North American mud shale in the study area (some data are cited from Ref.[16])"

Fig.6

Main reservoir space types of mud shale and sandstone in Shanxi Formation"

Fig.7

Gas content distribution histogram of mud shale in Shanxi Formation"

Table 2

Statistical table of field analytical gas volume of Shanxi Formation shale gas in Well YC96"

组合类型深度/m岩性解析气量/(m3/t)损失气量/(m3/t)残余气量/(m3/t)总含气量/(m3/t)
泥—砂—泥2 623.60灰黑色粉砂质泥岩0.050.040.010.1
2 624.33灰黑色粉砂质泥岩0.110.060.030.2
2 629.17灰黑色砂岩夹泥质条带1.360.950.082.39
2 635.12灰黑色粉砂质泥岩0.130.090.060.28
2 636.71黑色泥岩0.220.160.090.47
2 637.41黑色泥岩0.20.010.010.22
2 641.98灰黑色粉砂岩夹泥质条带0.180.040.020.24
2 644.94灰黑色粉砂岩0.320.220.070.61
2 645.48灰黑色粉砂质泥岩0.380.250.080.71
2 647.93黑色泥岩0.300.200.060.56
泥—砂—煤2 649.56黑色炭质泥岩0.290.200.070.56
2 651.29黑色炭质泥岩0.070.040.030.14
2 653.46灰黑色细砂岩0.020.010.010.04
2 654.96黑色泥岩0.090.060.040.19
2 657.48黑色粉砂质泥岩0.040.030.030.1
2 658.85灰黑色泥岩0.090.060.050.2
2 659.90黑色炭质泥岩夹砂质条带夹煤线5.543.700.8310.07
2 661.32黑色炭质泥岩0.060.040.030.13
2 663.91灰黑色粉砂质泥岩0.240.160.090.49
2 667.32深灰色细砂岩夹泥质条带0.160.110.080.35
厚层泥—煤2 668.08黑色泥岩0.860.580.031.47
2 669.49灰黑色炭质泥岩0.90.580.061.54
2 754.0027.7518.511.0947.35
2 755.09黑色泥岩0.670.450.041.16
2 756.25灰黑色粉砂质泥岩夹炭质泥岩1.400.950.082.43
2 759.09黑色泥岩0.260.170.040.47
2 758.13黑色炭质泥岩1.470.960.092.52
2 757.30灰黑色粉砂质泥岩0.650.430.051.13

Fig.8

Relationship between isothermal adsorption capacity (VL) and TOC of shale in Shanxi Formation"

Fig.9

Relationship between TOC and analytical gas content of mud shale and depth of Shan2 Member in Well Y2156"

Table 3

Test results of shale specific surface area of Shanxi Formation in Well YQ56"

样品

编号

岩性TOC/%黏土矿物含量/%

微孔比表面积

/(m2/g)

中孔比表面积

/(m2/g)

总比表面积

/(m2/g)

YQ56-1灰色粉砂质泥岩0.42453.7584.4128.170
YQ56-2灰色粉砂质泥岩0.7644.2815.0799.360
YQ56-3灰色粉砂质泥岩0.41655.0136.75711.769
YQ56-4灰色粉砂质泥岩0.13555.2485.61010.858
YQ56-5灰黑色泥岩4.1747.58210.67418.256
YQ56-6深灰色粉砂质泥岩0.95584.5845.44210.025
YQ56-7黑色粉砂质泥岩1.92666.4217.38013.800
YQ56-8深灰色粉砂质泥岩0.57623.8897.54511.434
YQ56-9黑色粉砂质泥岩1.25606.4186.21212.630
平均值1.1661.05.2446.56811.811
川东南龙马溪组243.2432.616.3054.62820.946

Fig.10

Relationship between specific surface area of mud shale and clay mineral content of Shanxi Formation in Well YQ56"

Fig.11

Relationship between clay mineral content and adsorbed gas volume of Shanxi Formation in Well YQ56"

Fig.12

Physical property test profile of Shan1 Member of Well YQ56"

Fig.13

Enrichment type profile of Shanxi Formation in Well YQ56"

Fig.14

Isoline map of enrichment index of Shanxi Formation in southeastern Ordos Basin"

1 郭少斌, 王子龙, 马啸.中国重点地区二叠系海陆过渡相页岩气勘探前景[J].石油实验地质, 2021,43(3):377-385,414.
GUO S B,WANG Z L,MA X.Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J].Petroleum Geology & Experiment,2021,43(3):377-385,414.
2 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J].天然气工业, 2021,41(1): 1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J].Natural Gas Industry, 2021,41(1): 1-14.
3 张琴, 邱振, 张磊夫, 等.海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J].天然气地球科学, 2022,33(3): 396-407.
ZHANG Q, QIU Z, ZHANG L F, et al. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin[J].Natural Gas Geoscience, 2022,33(3): 396-407.
4 刘亢.鄂尔多斯盆地石炭—二叠纪海陆过渡相页岩气成藏条件及勘探潜力[J].中国煤炭地质,2021,33(9): 1-7.
LIU K. Permo-Carboniferous marine-terrestrial transitional facies shale gas reservoiring condition and exploration potential in Ordos Basin[J]. Coal Geology of China, 2021,33(9): 1-7.
5 马新华, 谢军, 雍锐, 等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发, 2020,47(5): 841-855.
MA X H, XIE J, YONG R, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5): 841-855.
6 匡立春, 董大忠, 何文渊, 等.鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J].石油勘探与开发, 2020,47(3): 435-446.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics of paralic shale gas and its exploration and development prospects in the east margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020,47(3): 435-446.
7 李建忠, 李登华, 董大忠, 等.中美页岩气成藏条件、分布特征差异研究与启示[J].中国工程科学, 2012,14(6): 56-63.
LI J Z, LI D H, DONG D Z, et al. Comparison and enlightenment on formation condition and distribution characteristics of shale gas between China and U. S.[J]. Engineering Sciences, 2012,14(6): 56-63.
8 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选(2009—2011年)[R]. 北京: 科学出版社, 2014: 10-15.
Strategic Research Center of Oil and Gas Resources,MNR.Survey and Evaluation of National Shale Gas Resource Potential and Optimization of Favorable Areas (2009-2011) [R]. Beijing: Science Press, 2014: 10-15.
9 付金华, 郭少斌, 刘新社, 等.鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J].吉林大学学报(地球科学版), 2013,43(2): 382-389.
FU J H, GUO S B, LIU X S, et al. Shale gas accumulation condition and exploration potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition),2013,43(2):382-389.
10 董大忠,王玉满,黄旭楠,等. 中国页岩气地质特征、资源评价方法及关键参数[J].天然气地球科学,2016,27(9):1583-1601.
DONG D Z, WANG Y M, HUANG X N, et al. Discussion about geological characteristics,resource evaluation methods and its key parameters of shale gas in China[J]. Natural Gas Geoscience, 2016,27(9): 1583-1601.
11 吴鹏, 曹地, 朱光辉, 等.鄂尔多斯盆地东缘临兴地区海陆过渡相页岩气地质特征及成藏潜力[J].煤田地质与勘探, 2021, 49(6) :24-34.
WU P, CAO D, ZHU G H, et al. Geological characteristics and reservoir-forming potential of shale gas of transitional facies in Linxing area, eastern margin of Ordos Basin[J]. Coal Geology & Exploration, 2021,49(6): 24-34.
12 琚宜文, 戚宇, 房立志, 等.中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016,31(8): 782-798.
JU Y W, QI Y, FANG L Z, et al. China shale gas reservoir types and its controlling factors[J].Advances in Earth Science, 2016,31(8): 782-798.
13 董大忠, 邱振, 张磊夫, 等.海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J].沉积学报, 2021,39(1): 29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J].Acta Sedimentologica Sinica,2021,39(1):29-45.
14 黄第藩, 李晋超.干酪根类型划分的X图解[J].地球化学, 1982(1) :21-30.
HUANG D F, LI J C. X-diagram of Kerogen type division[J]. Geochimica, 1982(1) :21-30.
15 闫德宇,黄文辉,张金川.鄂尔多斯盆地海陆过渡相富有机质泥页岩特征及页岩气意义[J].地学前缘,2015,22(6):197-206.
YAN D Y, HUANG W H, ZHANG J C. Characteristics of marine-continental transitional organic-rich shale in the Ordos Basin and its shale gas significance[J]. Earth Science Frontiers, 2015,22(6): 197-206.
16 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J].中国地质, 2014,41(3): 893-901.
GUO X S, HU D F, WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014,41(3): 893-901.
17 中国国家标准化管理委员会.GB/T31483—2015 页岩气地质评价方法[S]. 北京: 中国标准化出版社,2015.
China National Standardizing Committee. GB/T31483-2015 Geological Evaluation Methods for Shale Gas[S].Beijing: Standards Press of China, 2015.
18 龙鹏宇, 张金川, 唐玄, 等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学, 2011,22(3): 525-532.
LONG P Y, ZHANG J H, TANG X, et al. Characteristics of shale fracture development and its influence on shale gas exploration and development[J]. Natural Gas Geoscience, 2011,22(3): 525-532.
19 董泽亮, 李贤庆, 杨杰, 等. 煤系烃源岩生气热模拟实验研究[J].中国煤炭地质, 2015,27(6): 12-34.
DONG Z L, LI X Q, YANG J, et al. An experimental study on coal measures source rocks gas generation thermal simulation[J]. Coal Geology of China, 2015,27(6): 12-34.
20 宫美林, 丁文龙, 皮冬冬, 等. 鄂尔多斯盆地东南部下寺湾—云岩区二叠系山西组页岩气形成条件[J].东北石油大学学报, 2013,37(3): 1-10.
GONG M L, DING W L, PI D D, et al. Forming conditions of shale gas of the Shanxi Formation of Permian in the southeast of Ordos Basin[J]. Journal of Northeast Petroleum University, 2013,37(3): 1-10.
21 兰朝利, 郭伟, 王奇, 等.鄂尔多斯盆地东部二叠系山西组页岩气成藏条件与有利区筛选[J]. 地质学报, 2016,90(1): 177-188.
LAN C L, GUO W, WANG Q, et al. Shale gas accumulation condition and favorable area optimization[J]. Acta Geologica Sinica, 2016,90(1):177-188.
22 吉利明, 邱军利, 宋之光, 等.粘土岩孔隙内表面积对甲烷吸附能力的影响[J]. 地球化学, 2014,43(3): 238-244.
JI L M, QIU J L, SONG Z G, et al. Impact of internal surface area of pores in clay rocks on their adsorption capacity of methane[J]. Geochimica, 2014,43(3): 238-244.
23 ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994,66: 1739-1758.
24 姜振学, 唐相路, 李卓, 等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23(2): 893-901.
JIANG Z X, TANG X L, LI Z, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin [J]. Earth Science Frontiers, 2016,23(2): 893-901.
25 李靖, 李相方, 李莹莹, 等.页岩黏土孔隙气—液—固三相作用下甲烷吸附模型[J].煤炭学报, 2015,40(7): 1580-1587.
LI J, LI X F, LI Y Y, et al. Methane adsorption model for clay with gas-liquid-solid interaction[J]. Journal of China Coal Society, 2015,40(7): 1580-1587.
26 方朝合, 黄志龙, 王巧智, 等.富含气页岩储层超低含水饱和度成因及意义[J].天然气地球科学, 2014,25(3): 471-476.
FANG C H,HUANG Z L, WANG Q Z, et al. Cause and significance of the ultralow water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience,2014,25(3):471-476.
27 李相方,蒲云超,孙长宇,等.煤层气与页岩气吸附/解吸的理论再认识[J].石油学报, 2014,35(6): 1113-1129.
LI X F, PU Y C, SUN C Y, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014,35(6): 1113-1129.
28 田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J]. 天然气地球科学,2016,27(3): 494-502.
TIAN H, ZHANG S C, LIU S B, et al. The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J]. Natural Gas Geoscience, 2016,27(3): 494-502.
29 刘大锰, 李俊乾, 李紫楠.我国页岩气富集成藏机理及其形成条件研究[J].煤炭科学技术,2013,41(9): 66-74.
LIU D M, LI J Q, LI Z N. Research on enrichment and accumulation mechanism of shale gas and its formation conditions in China[J].Coal Science and Technology,2013,41(9):66-74.
30 卢龙飞, 秦建中, 申宝剑, 等.中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J].地学前缘,2018,25(4):226-236.
LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J].Earth Science Frontiers,2018,25(4): 226-236.
31 黄何鑫. 延长矿区山西组页岩组构特征及其对含气性的控制[D].北京:中国石油大学(北京),2016.
HUANG H X. Structure Characteristics of Shale and Its Control on Gas of Shanxi Formation in Yanchang Exploration Area[D].Beijing: China University of Petroleum(Beijing),2016.
32 张丽霞, 姜呈馥, 郭超, 等.鄂尔多斯盆地东部上古生界页岩气勘探潜力分析[J]. 西安石油大学学报(自然科学版), 2012,27(1): 23-26.
ZHANG L X,JIANG C F,GUO C, et al. Exploration potential of Upper Paleozoic shale gas in the eastern Ordos Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2012,27(1): 23-26.
33 郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 2014,88(7): 1209-1218.
GUO X S. The rule of “binary enrichment” of marine shale gas in South China:Practical understanding of shale gas exploration in Sichuan Basin and its surrounding Longmaxi Formation[J]. Acta Geologica Sinica, 2014,88(7): 1209-1218.
[1] Dianying GENG, Zhaobiao YANG, Geng LI, Tongsheng YI, Bingren JIANG, Jun JIN. Physical properties and gas-bearing properties of marine shale gas reservoirs in the Lower Carboniferous Jiusi Formation-Xiangbai Formation in Well Longcan 1, Weining area, Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(8): 1226-1239.
[2] Dongtao ZHANG, Zantong HU, Ye HE, Yalei YAN. Analysis on the difficulties and countermeasures of geosteering of horizontal wells in Zhaotong National Shale Gas Demonstration Zone,southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(8): 1354-1362.
[3] Lijun GAO,Peng WU,Xuefeng SHI,Yong LI,Jiandong PANG,Tiemei YANG. Logging interpretation and classification method of reservoir parameters of marine continental transitional shale based on source and reservoir type [J]. Natural Gas Geoscience, 2022, 33(7): 1132-1143.
[4] Liang XIONG, Zhenheng YANG, Baojian SHEN, Longfei LU, Limin WEI, Ruyue WANG, Heqing PANG. Micro reservoir space characteristics and significance of deep shale gas in Wufeng-Longmaxi formations in Weirong area, South Sichuan [J]. Natural Gas Geoscience, 2022, 33(6): 860-872.
[5] Wei LI, Haijie ZHANG, Tongtong LUO, Wei WU, Lin JIANG, Zheng ZHONG, Yuqiang JIANG, Yonghong FU, Guangyin CAI. Influence of micro pore structure of shale reservoir on shale gas occurrence in western Chongqing [J]. Natural Gas Geoscience, 2022, 33(6): 873-885.
[6] Feng LIANG, Wei JIANG, Yun DAI, Yu CHEN, Chao LUO, Qin ZHANG, Kailin TONG, Xi HU, Bin LU. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(5): 755-763.
[7] Huaicai FAN, Jian ZHANG, Shengjie YUE, Haoran HU. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization [J]. Natural Gas Geoscience, 2022, 33(4): 512-519.
[8] Xiaoming LI, Yarong WANG, Wen LIN, Lihong MA, Dexun LIU, Jirong LIU, Yu ZHANG. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province [J]. Natural Gas Geoscience, 2022, 33(4): 629-641.
[9] Jianfa WU, Shengxian ZHAO, Yingkun ZHANG, Ziqiang XIA, Bo LI, Shusheng YUAN, Jian ZHANG, Chenglin ZHANG, Yuanhan HE, Shangbin CHEN. Material composition and pore contribution of deep shale gas reservoir and its significance for exploration and development [J]. Natural Gas Geoscience, 2022, 33(4): 642-653.
[10] Xiaoyan ZOU, Xianqing LI, Yuan WANG, Jizhen ZHANG, Pei ZHAO. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
[11] Guoxin SHAN, Peng CHENG, Xianming XIAO, Jian SUN, Ping GAO. Water-bearing characteristics in overmature shales from coal measure strata based on equilibrium water vapor adsorption and its geological significances [J]. Natural Gas Geoscience, 2022, 33(4): 666-676.
[12] Qin ZHANG,Zhen QIU,Leifu ZHANG,Yuman WANG,Yufeng XIAO,Dan LIU,Wen LIU,Shuxin LI,Xingtao LI. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 396-407.
[13] Yueli LIANG,Jiawang GE,Xiaoming ZHAO,Xi ZHANG,Shuxin LI,Zhihong NIE. High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd Member of Shanxi Formation, eastern margin of Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 408-417.
[14] Yicheng WANG,Leifu ZHANG,Zhen QIU,Sizhong PENG,Congjun FENG,Mengsi SUN. Lithofacies types and reservoir characteristics of transitional shales of the Permian Shan23 sub-member, eastern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 418-430.
[15] Pengwei WANG,Guangxiang LIU,Zhongbao LIU,Xiao CHEN,Peng LI,Beibei CAI. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(3): 431-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!