Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (6): 929-943.doi: 10.11764/j.issn.1672-1926.2022.02.002

Previous Articles     Next Articles

Evidence and controlling factors of thermochemical sulfate reduction in the Sinian gas reservoirs, Sichuan Basin

Qiang LIU1,2(),Xuesong LU1,2(),Junjia FAN1,2,Shaobo LIU1,2,Xingzhi MA1,2,Bokai DAI3,Lili GUI1,2,Weiyan CHEN1,2   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.CNPC Key Laboratory of Basin Structure and Hydrocarbon Accumulation,Beijing 100083,China
    3.College of Geosciences,Yangtze University,Wuhan 430100,China
  • Received:2021-11-14 Revised:2022-02-17 Online:2022-06-10 Published:2022-06-28
  • Contact: Xuesong LU E-mail:liuqiangkz15@163.com;luxs@petrochina.com.cn
  • Supported by:
    The National Natural Science Foundation of China(42002177);the Science and Technology Development Project of China National Petroleum Corporation(2021DJ0105);the International Cooperation Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ-2019-0403)

Abstract:

Comprehensive analysis of reservoir bitumen, fluid inclusion composition, sulfur distribution and sulfur isotope characteristics in Sinian system, Gaoshiti-Moxi area of Sichuan Basin, shows that thermochemical sulfate reduction (TSR) occurred in the Gaoshiti-Moxi area, but the TSR is weak and it is mainly controlled by hydrothermal fluid flow related to strike-slip faults. Main evidences are as follows: (1) Sulfide and sulfate minerals such as galena, sphalerite, pyrite and barite are developed in many Sinian reservoirs in outcrops of the peripheral area of Sichuan Basin and Gaoshiti-Moxi area. The sulfur isotope is characterized by high δ34S values, which are generally greater than 12‰, indicating that the source of sulfur is seawater and related to TSR. (2) The S/C range of Sinian solid bitumen in Gaoshiti-Moxi area is 0.031-0.059, which has typical characteristics of TSR bitumen. (3) The content of H2S in some fluid inclusions is high, and the fluid inclusions containing elemental sulfur, bitumen and calcite daughter crystals are direct evidence of TSR. (4) The content of H2S in Sinian gas reservoir is 0.24%-6.8%, with an average of 1.22%. It is a micro-high H2S gas reservoir. The absence of gypsum deposits in the formation and SO42- in the formation water is quite low, which is completely different from the global high sulfur gas reservoir where TSR occurs, indicating that the effect intensity of TSR in Sinian gas reservoir is weak. (5) Wells, which have found sulfide in the Sinian system in Gaoshiti-Moxi area, are mainly located near the NW and NWW strike-slip faults, and the distribution is obviously controlled by faults. TSR may be derived from deep hydrothermal fluids communicated by faults, and TSR is mainly developed near faults, which is fault-controlled TSR. H2S generated by TSR of hydrocarbons in Sinian reservoirs in Sichuan Basin promotes the formation of lead-zinc deposits and other sulfide deposits, that is, hydrocarbon accumulation, cracking and fracture fluid activity, TSR and the formation of MVT type lead-zinc deposits are closely linked, which is an ideal area for the study of deep organic-inorganic interaction.

Key words: TSR, Lead-zinc deposits, Bitumen, Hydrogen sulfide, Fluid inclusion, Hydrothermal fluid, Sinian System, Sichuan Basin

CLC Number: 

  • TE121

Fig.1

Distribution map of lead-zinc deposits around Sichuan Basin (a), well location map (b) and comprehensive stratigraphic column map of research area (c) (modified according to Refs.[27-29])"

Fig.2

Geochemical characteristics of natural gas in Sinian-Middle Permian in Gaoshiti-Moxi areas (data according to Refs.[7,17,27,30,32,40-41])"

Fig.3

Characteristics of metal sulfide in Dengying Formation in Gaoshiti-Moxi areas"

Fig.4

Microscopic characteristics and element energy spectrum of lead-Zinc deposits in Dengying Formation, Gaoshiti-Moxi areas"

Table 1

Sulfur isotope characteristics of lead-Zinc deposits in Dengying Formation, Gaoshiti-Moxi areas"

样品编号层位深度/m矿物矿物特征δ34S/‰
平均值最大值最小值
MX148-1灯二段5 596.3黄铁矿微晶白云岩砾屑中自形—半自形粗粒黄铁矿颗粒富集成团块26.1126.2425.88
MX148-2灯二段5 596.7黄铁矿黄铁矿沿裂缝分布25.7626.923.69
MX148-3灯二段5 596.62黄铁矿微晶白云石中自形—半自形粗粒黄铁矿颗粒富集成团块20.2826.1213.47
PT101-6灯二段5 779.02黄铁矿细粒黄铁矿聚集,条带状分布16.80218.4615.73
PT102-2灯二段5 878.56黄铁矿细粒黄铁矿聚集成块,形状不规则,粒径为10~100 μm,沿微晶白云石与细晶白云石胶结物接触边缘分布,溶蚀矿洞中充填白云石、石英 、萤石15.70616.4315.09
PT1-21灯二段5 727.96黄铁矿自形粗粒黄铁分布与闪锌矿伴生24.0224.9523.5
PT1-21灯二段5 727.96闪锌矿石英脉体旁,不规则块状闪锌矿分布于微晶白云石中,内见细粒黄铁26.3827.225.1
PT1-36灯二段5 747.48~5 747.56黄铁矿微晶白云石中自形—半自形细粒黄铁矿富集成块17.3817.5917.01
PT1-44灯二段5 749.91黄铁矿微晶白云石中自形—半自形细粒黄铁矿颗粒富集,细晶白云石中未见黄铁矿,黄铁矿颗粒间见方铅矿18.0218.1417.81
PT1-51灯二段5 753.27黄铁矿藻团块上自形—半自形细粒黄铁矿颗粒聚集成块16.02516.7615.57
PT1-56灯二段5 757.53黄铁矿微晶白云石中自形—半自形细粒黄铁矿颗粒聚集成块、成条带状25.8326.925.06
PT1-57灯二段5 758.16~5 758.29黄铁矿微晶白云石中自形—半自形细粒黄铁矿颗粒富集,黄铁矿颗粒间见方铅矿16.7318.4915.28
PT1-58-1灯二段5 758.94黄铁矿早期白云石细脉中黄铁矿条带2.736.63-0.45
PT1-58-2灯二段5 758.94黄铁矿细晶白云石中自形—半自形黄铁矿15.06
PT1-75灯二段5 771.71~5 771.86黄铁矿白云岩砾屑中自形—半自形细粒黄铁矿聚集成块15.616.5715.1
PT1-84灯二段5 778.71黄铁矿微晶白云石中自形—半自形粗粒黄铁矿富集成团块16.45617.4415.68

Fig.5

Sulfur isotope distribution of different sulfides in Dengying Formation, Gaoshiti-Moxi areas (data according to Refs.[7,27,38,42-45] )"

Table 2

Element composition of bitumen in Dengying Formation, Gaoshiti-Moxi areas"

测试点号层位深度/m沥青镜下特征元素原子相对含量/%S/CO/C
COS
PT1-101-1灯二段5 768.18沥青脉体,脉体中发育方铅矿92.254.673.080.0330.051
PT1-101-2灯二段5 768.18沥青脉体,脉体中发育方铅矿93.133.92.980.0320.042
PT1-101-3灯二段5 768.18白云石孔洞中沥青87.849.412.750.0310.107
PT1-101-4灯二段5 768.18沥青脉体,不含方铅矿93.233.693.090.0330.040
PT1-101-5灯二段5 768.18沥青脉体,不含方铅矿84.6212.592.790.0330.149
PT1-77-1灯二段5 773.68缝合线中与方铅矿、黄铁矿伴生沥青91.994.663.350.0360.051
PT1-77-2灯二段5 773.68缝合线中与方铅矿、黄铁矿伴生沥青92.573.983.450.0370.043
PT1-84-1灯二段5 778.71孔洞中纤维状各向异性结构沥青92.793.763.450.0370.041
PT1-84-2灯二段5 778.72孔洞中纤维状各向异性结构沥青92.583.214.210.0450.035
MX39-17-1灯四段5 303.00沥青脉体92.261.382.870.0310.015

Fig.6

Relationship diagrams between S/C and H/C, N/C of solid bitumen in Dengying Formation, Gaoshiti-Moxi areas (data according to Refs.[10,18,48-52])"

Fig.7

Raman spectra and characteristics of inclusions in fluorite from Dengying Formation, Gaoshiti-Moxi areas"

Table 3

Gas phase composition of fluid inclusions in Sinian Dengying Formation reservoir, Gaoshiti-Moxi areas"

井号层位深度/m赋存矿物均一温度/℃盐度/%CH4拉曼 位移/cm-1气体组成/%
CH4CO2H2S
MX103灯四段5 245.5白云石160.12.32 915.369802
MX39灯四段5 306.5白云石2076.32 915.439702
MX103灯四段5 245.4萤石22710.492 9149162
MX39灯四段5 306.5萤石20510.732 914.89901
MX51灯四段5 334.14萤石--2 911.3682.112.75.2
MX39灯四段5 281.5石英15311.222 914.969271
MX13灯四段5 046.9石英1496.32 9159550
MX103灯四段5 206.5方解石125.114.462 9149460

Table 4

The ions and formation water types of Dengying Formation, Gaoshiti-Moxi areas"

井号层位深度/m主要离子类型及含量/(g/L)

矿化度/

(g/L)

水型
K+Na+Ca2+Mg2+Ba2+Cl-SO42-CO32-
GS1*灯四段—灯二段4 956~5 3990.786.9714.687.31.2364.430095.39氯化钙
GS11灯二段5 402~5 4673.0112.4410.995.760.1942.530074.99氯化钙
GS6*灯二段5 334~5 3452.5715.6019.126.360.2780.4800.24124.64氯化钙
MX8*灯四段5 102~5 1725.6221.6016.766.240.5573.5200124.28氯化钙
MX9灯二段5 4965.6440.050.70.13010.215.15061.88碳酸氢钠
MX10*灯二段5 449~5 470230122.3815.406.940.8210.5000152.81氯化钙
MX11灯二段5 449~5 4702.3122.3915.426.930.8810.5000153.39氯化钙
MX17*灯四段5 062.5~5 0734.2138.9910.364.561.3712.6800186.29氯化钙
MX18灯二段5 105.82.6812.820.4266.9904.705.280261.52碳酸氢钠
MX22灯四段5 750.48290711.653.510.30013.121.69033.61碳酸氢钠
MX23灯四段5 213~5 2712.349.2313.727.87071.7400104.90氯化钙
1 WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133:157-171.
2 朱光有, 张水昌, 梁英波, 等. 川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据[J]. 中国科学(D辑:地球科学), 2005,35(11):1037-1046.
ZHU G Y, ZHANG S C, LIANG Y B, et al. Isotopic evidence of TSR origin of high H2S content natural gas in Feixianguan Formation, northeastern Sichuan Basin[J]. Science China Earth Science, 2005,35(11):1037-1046.
3 蔡春芳, 李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展, 2005,20(10):1100-1105.
CAI C F, LI H T. Thermochemical sulfate reduction in sedimentary basins:A review[J].Advances in Earth Science,2005,20(10):1100-1105.
4 刘全有, 金之钧, 王毅, 等. 四川盆地海相层系天然气成因类型与TSR改造沥青证据[J]. 天然气地球科学, 2009, 20(5):759-762.
LIU Q Y, JIN Z J, WANG Y, et al. Genesis of natural gas in marine carbonate of Sichuan Basin and bitumen evidence of TSR alteration[J]. Natural Gas Geoscience,2009,20(5):759-762.
5 刘文汇, 腾格尔, 高波, 等. 四川盆地大中型天然气田(藏)中H2S形成及富集机制[J]. 石油勘探与开发, 2010, 37(5):513-522.
LIU W H, TENG G E, GAO B, et al. H2S formation and enrichment mechanism in medium to large scale natural gas fields (reservoirs) in Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(5):513-522.
6 张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27(3):809-826.
ZHANG S C, ZHU G Y, HE K. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J].Acta Petrologica Sinica,2011,27(3):809-826.
7 朱光有, 张水昌, 梁英波, 等. 四川盆地威远气田硫化氢的成因及其证据[J]. 科学通报, 2006, 51(23):2780-2788.
ZHU G Y, ZHANG S C, LIANG Y B, et al. Genesis and evidence of H2S in Weiyuan Gas Field, Sichuan Basin[J]. Chinese Science Bulletin, 2006, 51(23):2780-2788.
8 MACHEL H G, KROUSE H R, SASSEN R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4):373-389.
9 CAI C, XIE Z, WORDEN R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards prediction of fatal H2S concentrations[J]. Marine and Petroleum Geology, 2004, 21(10):1265-1279.
10 KELEMEN S R, WALTERS C C, KWIATEK P J, et al. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration[J]. Organic Geochemistry, 2008, 39(8):1137-1143.
11 刘全有, 金之钧, 吴小奇, 等. 四川盆地含H2S天然气中硫化物成因探讨[J]. 天然气地球科学, 2014, 25(1):33-38.
LIU Q Y, JIN Z J, WU X Q, et al. Genetic origin of sulfate compounds in H2S bearing gas reservoirs of Sichuan Basin, China[J]. Natural Gas Geoscience, 2014, 25(1):33-38.
12 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293.
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293.
13 刘树根, 孙玮, 赵异华, 等. 四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素[J]. 天然气工业, 2015, 35(1):10-23.
LIU S G, SUN W, ZHAO Y H, et al. Differential accumulation and distribution of natural gas and their main controlling factors in the Upper Sinian, Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1):10-23.
14 魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1):1-12.
WEI G Q, DU J H, XU C C, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(1):1-12.
15 杨跃明, 文龙, 罗冰, 等. 四川盆地乐山—龙女寺古隆起震旦系天然气成藏特征[J]. 石油勘探与开发,2016,43(2):179-188.
YANG Y M, WEN L, LUO B, et al. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2016,43(2):179-188.
16 谢增业, 魏国齐, 李剑, 等. 四川盆地川中隆起带震旦系—二叠系天然气地球化学特征及成藏模式[J]. 中国石油勘探, 2021, 26(6):50-67.
XIE Z Y, WEI G Q, LI J, et al. Geochemical characteristics and accumulation pattern of gas reservoirs of the Sinian-Permian in central Sichuan uplift zone, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6):50-67.
17 魏国齐, 谢增业, 宋家荣,等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发, 2015, 42(6):702-711.
WEI G Q,XIE Z Y,SONG J R,et al.Features and origin of na-tural gas in the Sinian-Cambrian of central Sichuan paleo-uplift,Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(6):702-711.
18 帅燕华, 张水昌, 胡国艺, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系天然气TSR效应及气源启示[J]. 地质学报, 2019,93(7):1754-1766.
SHUAI Y H, ZHANG S C, HU G Y, et al. Thermochemical sulphate reduction of Sinian and Cambrian natural gases in the Gaoshiti-Moxi area, Sichuan Basin, and its enlightment for gas sources[J].Acta Geologica Sinica,2019,93(7):1754-1766.
19 袁玉松, 郝运轻, 刘全有, 等. TSR烃类化学损耗评价:Ⅱ 四川盆地含硫化氢天然气藏TSR烃类损耗程度[J]. 海相油气地质, 2021, 26(3):193-199.
YUAN Y S, HAO Y Q, LIU Q Y, et al. Evaluation of TSR hydrocarbon chemical loss: II. TSR hydrocarbon loss degree of H2S-bearing natural gas reservoir in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3):193-199.
20 翟光明. 中国石油地质志(卷十):四川油气区[M]. 北京:石油工业出版社, 1989:253-256.
ZHAI G M. Petroleum Geology of China(Vol.10):Sichuan Oil & Gas Field[M]. Beijing:Petroleum Industry Press, 1989:253-256.
21 魏国齐, 杨威, 杜金虎, 等. 四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发, 2015, 42(3):257-265.
WEI G Q, YANG W, DU J H, et al. Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(3):257-265.
22 马德波, 汪泽成, 段书府, 等. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发, 2018, 45(5):795-805.
MA D B, WANG Z C, DUAN S F, et al. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 795-805.
23 张旋, 冉崎, 陈康, 等. 川中地区安岳气田走滑断裂对灯影组储层及含气富集的控制作用[J]. 天然气地球科学,2022,33(6):917-928.
ZHANG X, RAN Q, CHEN K, et al. The control effect of strike-slip fault on Dengying Formation reservoir and gas enrichment in Anyue Gas Field in central Sichuan[J].Natural Gas Geoscience,2022,33(6):917-928.
24 魏国齐, 王志宏, 李剑, 等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1):1-13.
WEI G Q, WANG Z H, LI J, et al. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(1):1-13.
25 陈建平, 李伟, 倪云燕, 等.四川盆地二叠系烃源岩及其天然气勘探潜力(一):烃源岩空间分布特征[J]. 天然气工业, 2018, 38(5):1-16.
CHEN J P, LI W, NI Y Y, et al. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (Part 1): Spatial distribution of source rocks[J]. Natural Gas Industry, 2018, 38(5):1-16.
26 石书缘, 王铜山, 刘伟, 等. 四川盆地寒武系洗象池组储层特征及天然气勘探潜力[J]. 天然气地球科学,2020,31(6):773-785.
SHI S Y, WANG T S, LI W, et al. Reservoir characteristic and gas exploration potential in Cambrian Xixiangchi Formation of Sichuan Basin[J]. Natural Gas Geoscience,2020,31(6):773-785.
27 ZHANG P, LIU G, CAI C, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin,SW China[J]. Precambrian Research,2019, 321:277-302.
28 SHI C, CAO J, LUO B, et al. Major elements trace hydrocarbon sources in over-mature petroleum systems: Insights from the Sinian Sichuan Basin,China[J].Precambrian Research,2020,343:105726.
29 孔志岗, 张斌臣, 吴越, 等. 四川大梁子富锗铅锌矿床的控矿构造样式及成矿机制研究[J]. 地学前缘,2022,29(1):143-159.
KONG Z G, ZHANG B C, WU Y, et al. Structure controlling pattern and metallogenic mechanism of the Daliangzi germanium-rich Pb-Zn deposit,Sichuan Province,China[J]. Earth Science Frontiers, 2022, 29(1):143-159.
30 谢增业, 李剑, 杨春龙, 等. 川中古隆起震旦系—寒武系天然气地球化学特征与太和气区的勘探潜力[J]. 天然气工业, 2021, 41(7):1-14.
XIE Z Y, LI J, YANG C L, et al. Geochemical characteristics of Sinian-Cambrian natural gas in central Sichuan paleo-uplift and exploration potential of Taihe gas area[J]. Natural Gas Industry, 2021, 41(7):1-14.
31 谢增业, 杨春龙, 董才源, 等. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4):447-461.
XIE Z Y, YANG C L, DONG C Y, et al. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin,China[J].Natural Gas Geoscien-ce, 2020, 31(4):447-461.
32 胡安平. 川东北飞仙关组高含硫化氢气藏有机岩石学与有机地球化学研究[D]. 杭州:浙江大学, 2009:60-80.
HU A P. Organic Petrographic and Organic Geochemical Studies of the Sour Gas Accumlations in the Lower Triassic Feixiangguan Formation,NE Sichuan Basin[D]. Hangzhou:Zhejiang University, 2009:60-80.
33 HAO F, GUO T, ZHU Y, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang Gas Field,Sichuan Basin,China[J].AAPG Bulletin,2008, 92(5):611-637.
34 戴金星, 倪云燕, 黄士鹏. 四川盆地黄龙组烷烃气碳同位素倒转成因的探讨[J]. 石油学报, 2010, 31(5):710-717.
DAI J X, NI Y Y, HUANG S P. Discussion on the carbon isotopic reversal of alkane gases from the Huanglong Formation in the Sichuan Basin,China[J].Acta Petrolei Sinica,2010, 31(5):710-717.
35 DAI J X, SONG Y, DAI C S,et al. Geochemistry and accumulation of carbon dioxide gases in China[J]. AAPG Bulletin, 1996, 80(10):1615-1626.
36 赵逊, 吴鸿锦, 林浩, 等. 四川洪雅县白沙河铅锌矿地质特征与成因[J]. 四川地质学报, 2016, 36(3):401-405.
ZHAO X, WU H J, LIN H, et al. Geological features and ore genesis for the Baishahe Pb-Zn Deposit in Hongya, Sichuan[J]. Acta Geologica Sichuan, 2016, 36(3):401-405.
37 龙腾. 四川盆地北缘MVT铅锌矿床与古油(气)藏耦合关系研究[D]. 成都:成都理工大学, 2016:49-55.
LONG T. Studies on the Coupling Relationship of the MVT Lead-zinc Deposits and the Ancient Oil(Gas) Reservoir in the Northern Margin of the Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016:49-55.
38 王国芝, 刘树根, 陈翠华, 等. 四川盆地东南缘河坝MVT铅锌矿与古油气藏的成生关系[J]. 地学前缘, 2013, 20(1):107-116.
WANG G Z, LIU S G, CHEN C H, et al. The genetic relationship between MVT Pb-Zn deposits and paleo-oil gas reservoirs at Heba, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2013, 20(1):107-116.
39 宋光永. 川东南地区上震旦统灯影组热液白云岩特征[D]. 成都:成都理工大学, 2010:37-63.
SONG G Y. Characteristics of Hydrothermal Dolomite of Upper Sinian Dengying Formation in Southeast Sichuan Basin[D].Chengdu:Chengdu University of Technology,2010:37-63.
40 戴金星, 倪云燕, 秦胜飞, 等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发, 2018, 45(4):588-597.
DAI J X, NI Y Y, QIN S F, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2018,45(4):588-597.
41 刘全有, 金之钧, 刘文汇, 等. 四川盆地东部天然气地球化学特征与TSR强度对异常碳、氢同位素影响[J]. 矿物岩石地球化学通报, 2015, 34(3):471-480.
LIU Q Y, JIN Z J, LIU W H, et al. TSR impact on abnormal carbon and hydrogen stable isotopes in sour natural gas from marine carbonate gas fields in the eastern Sichuan Basin[J]. Bulletin of Mineralogy,Petrology and Geochemisty,2015,34(3):471-480.
42 王晓虎, 薛春纪, 李智明, 等. 扬子陆块北缘马元铅锌矿床地质和地球化学特征[J]. 矿床地质, 2008,27(1):37-48.
WANG X H, XUE C J, LI Z M, et al. Geological and geochemical characteristics of Mayuan Pb-Zn ore deposit on northern margin of Yangtze landmass[J]. Mineral Deposits, 2008,27(1):37-48.
43 李厚民, 陈毓川, 王登红, 等. 陕西南郑地区马元锌矿的地球化学特征及成矿时代[J]. 地质通报, 2007,26(5):546-552.
LI H M, CHEN Y C, WANG D H, et al. Geochemistry and mineralization age of the Mayuan zinc deposit, Nanzheng, southern Shaanxi,China[J]. Geological Bulletin of China,2007,26(5):546-552.
44 侯满堂, 王党国, 邓胜波, 等. 陕西马元地区铅锌矿地质特征及矿床类型[J]. 西北地质, 2007, 40(1):42-60.
HOU M T, WANG D G, DENG S B, et al. Geology and genesis of the Mayuan lead-zinc minerationa belt in Shanxi Provience[J]. Northwestern Geology, 2007, 40(1):42-60.
45 张鹏伟. 川中地区震旦—寒武系气藏硫化氢成因机制研究[D]. 北京:中国石油大学(北京), 2019: 87-97.
ZHANG P W. Origin of Hydrogen Sulfide in the Ediacaran and Cambrian in the Central Sichuan Basin[D]. Beijing: China University of Petroleum(Beijing), 2019: 87-97.
46 陕亮, 郑有业, 许荣科, 等. 硫同位素示踪与热液成矿作用研究[J]. 地质与资源, 2009, 18(3):197-203.
SHAN L, ZHENG Y Y, XU R K, et al. Review on sulfur isotopic tracing and hydrothermal metallogenesis[J]. Geology and Resources, 2009, 18(3):197-203.
47 CAI C, LI K, ZHU Y, et al. TSR origin of sulfur in Permian and Triassic reservoir bitumen, East Sichuan Basin, China[J]. Organic Geochemistry, 2010, 41(9):871-878.
48 王铜山, 耿安松, 孙永革, 等. 川东北飞仙关组储层固体沥青地球化学特征及其气源指示意义[J]. 沉积学报, 2008, 26(2):340-348.
WANG T S, GENG A S, SUN Y G, et al. Geochemical characteristics of solid bitumen in reservoir and their implication for the origin of natural gas of Feixiangguan Formation in northeastern Sichuan Basin[J].Acta Sedimentologica Sinica,2008, 26(2):340-348.
49 POWELL T G, MACQUEEN R W. Precipitation of sulfide ores and organic matter:Sulfate reactions at pine point, Canada[J]. Science, 1984, 224(4644):63-66.
50 田兴旺, 胡国艺, 李伟, 等. 四川盆地乐山—龙女寺古隆起地区震旦系储层沥青地球化学特征及意义[J]. 天然气地球科学, 2013, 24(5):982-990.
TIAN X W, HU G Y, LI W, et al. Geochemical characteristics and significance of Sinian reservoir bitumen in Leshan-Longnvsi paleo-uplift area,Sichuan Basin[J].Natural Gas Geoscience, 2013, 24(5):982-990.
51 钟荣春. 川东储层沥青地球化学特征及成因[D]. 杭州:浙江大学, 2007:24-30.
ZHONG R C, Geochemical Behaviors and Origin of Reservoir Bitumen in Eastern Sichuan Basin[D].Hangzhou:Zhejiang Uni-versity, 2007: 24-30.
52 朱扬明, 李颖, 郝芳, 等. 四川盆地东北部海、陆相储层沥青组成特征及来源[J]. 岩石学报, 2012, 28(3):870-878.
ZHU Y M, LI Y, HAO F, et al. Compositional characteristics and origin of marine and terrestrial solid reservoir bitumen in the northeast Sichuan Basin[J]. Acta Petrologica Sinica,2012,28(3):870-878.
53 ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils[J]. AAPG Bulletin, 1974, 58(11):2295-2318.
54 WOPENKA B, PASTERIS J D. Raman intensities and detection limits of geochemically relevant gas mixtures for a Laser Raman microprobe[J].Analytical Chemistry,1987,59(17):2165-2170.
55 GOLDSTEIN T P, AIZENSHTAT Z. Thermochemical sulfate reduction:A review[J].Journal of Thermal Analysis,1994, 42(1):241-290.
56 吴娟, 刘树根, 赵异华, 等. 四川盆地高石梯—磨溪构造震旦系—寒武系含气层系流体特征[J]. 成都理工大学学报(自然科学版), 2014, 41(6):713-722.
WU J, LIU S G, ZHAO Y H, et al. Fluid charceteristics of Upper Sinian-Lower Cambrian petroliferous strata in Gaoshiti-Moxi structure of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6):713-722.
57 QIN S, LI F, ZHOU Z, et al. Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue Gas Field in Sichuan Basin, China[J]. Marine and Petroleum Geology,2018,89(1):83-90.
58 BOTTOMS B,POTRA A,SAMUELSON J R,et al.Geoche-mical investigations of the Woodford-Chattanooga and Fayetteville shales: Implications for genesis of the Mississippi Valley-type zinc-lead ores in the southern Ozark Region and hydrocarbon exploration[J].AAPG Bulletin,2019,103(7):1745-1768.
59 吴越. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制[D]. 北京:中国地质大学(北京), 2013:134-151.
WU Y. The Age and Ore-forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China[D].Beijing:China University of Geosciences(Beijing), 2013:134-151.
60 刘树根, 宋金民, 赵异华, 等. 四川盆地龙王庙组优质储层形成与分布的主控因素[J]. 成都理工大学学报(自然科学版), 2014, 41(6):657-670.
LIU S G, SONG J M, ZHAO Y H, et al. Controlling factors of formation and distribution of Lower Cambrian Longwangmiao Formation high-quality reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(6):657-670.
61 LIU D, CAI C, HU Y, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021,123:104752.
[1] Yuman WANG, Guoqi WEI, Junjun SHEN, Zhen QIU, Xinjing LI, Qin ZHANG, Leifu ZHANG, Canhui WANG, Wen LIU. Analysis on carbonization distribution and main controlling factors of organic matter in marine shale in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2022, 33(6): 843-859.
[2] Xuan ZHANG, Qi RAN, Kang CHEN, Benjian ZHANG, Chen ZHANG, Bingshan MA, Qian MA, Shihu WU. The controlling effect of strike-slip fault on Dengying Formation reservoir and gas enrichment in Anyue Gas Field in central Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(6): 917-928.
[3] Xiaofeng ZHOU, Xizhe LI, Wei GUO, Xiaowei ZHANG, Pingping LIANG, Junmin YU. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng-Longmaxi formations, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(5): 775-788.
[4] Bei WANG, Xian PENG, Qian LI, Juan WANG, Xi FENG, Juan SHE, Tao LI, Junjun CAI. Type of infiltration and development response pattern of ultra-deep gas reservoir in the Qixia Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 520-532.
[5] Xin HU, Yufeng WANG, Senqi PEI, Qi ZENG, Rongrong LI, Hongyu LONG, Tanglü LI, Siyu ZHOU, Haitao SUN. Sedimentary evolution and its influence on karst reservoir development of the Middle Permian Maokou Formation in the northwestern Sichuan Basin, China [J]. Natural Gas Geoscience, 2022, 33(4): 572-587.
[6] Xiaoyan ZOU, Xianqing LI, Yuan WANG, Jizhen ZHANG, Pei ZHAO. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
[7] Guoli WANG,Xiaobo SONG,Yong LIU,Xianwu MENG,Ke LONG. Natural gas accumulation characteristics and exploration prospects of the 4th member of Leikoupo Formation in the western Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 333-343.
[8] Han XU,Mingjie LIU,Zhuang ZHANG,Sujuan YE,Yingtao YANG,Ling WU,Ling ZHANG,Hongli NAN,Xiucheng TAN,Wei ZENG,Chengbo LIAN. Diagenesis and porosity evolution of the 3rd member of Xujiahe Formation tight sandstone reservoir in the Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 344-357.
[9] Xu GUAN,Jineng JIN,Wei YANG,Xiaojuan WANG,Changjiang WU,Yongling OUYANG. Lithologic gas reservoir characteristics and prediction of gas-bearing favorable zone of the Xujiahe Formation in central Sichuan Basin:Case study of the 2nd member of Xujiahe Formation in Anyue-Moxi areas [J]. Natural Gas Geoscience, 2022, 33(3): 358-368.
[10] Wei WANG,Limei REN,Jiaju LIANG,Song TANG,Haifeng YUAN,Yuhan LI. Characteristics and hydrocarbon generation potential of Middle Permian marine source-rocks in central Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 369-380.
[11] Jiawei LIU,Hu ZHAO,Yi WANG,Wenjin ZHANG,Kang CHEN,Zhixin DI. Distribution characteristics and hydrocarbon geological significance of Permain volcanic rocks in Longhuichang-Longmen areas, eastern Sichuan Basin, SW China [J]. Natural Gas Geoscience, 2022, 33(3): 381-395.
[12] Hu ZHAO, Yidan FENG, Yi WANG, Shilin LI, Liangjun XU, Zhixin DI, Binrui ZHU. Seismic geological characteristics and exploration prospect of tight sandstone in Lianggaoshan Formation of Gaofengchang block, eastern Sichuan Basin, China [J]. Natural Gas Geoscience, 2022, 33(1): 153-167.
[13] Min YANG, Peng YU, Guangyou ZHU, Luolei ZHANG, Lei YAN, Chongjin ZHAO, Debo MA, Zhiyong CHEN. Gravity-magnetic-magnetotelluric joint inversion method coupled with seismic constraint information and its application: Case study of the analysis of deep geological structure in Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(1): 168-180.
[14] Yunyan NI, Limiao YAO, Jianli SUI, Jianping CHEN. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water [J]. Natural Gas Geoscience, 2022, 33(1): 78-91.
[15] Shiyu MA, Wuren XIE, Wei YANG, Shufu DUAN, Zecheng WANG, Saijun WU, Nan SU, Cuiguo HAO, Xiaodan WANG. Lithofacies and paleogeography of the lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(9): 1324-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!