Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (6): 843-859.doi: 10.11764/j.issn.1672-1926.2022.01.016

    Next Articles

Analysis on carbonization distribution and main controlling factors of organic matter in marine shale in Sichuan Basin and its periphery

Yuman WANG1(),Guoqi WEI1,Junjun SHEN2,Zhen QIU1,Xinjing LI1,Qin ZHANG1,Leifu ZHANG1,Canhui WANG2,Wen LIU1   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.Yangtze University,Wuhan 430100,China
  • Received:2021-12-24 Revised:2022-01-27 Online:2022-06-10 Published:2022-06-28
  • Supported by:
    The PetroChina Scientific and Technological Project(2021DJ1904);the Marine Shale Gas Selection Project of PetroChina Exploration & Production Company(kt2018-01-06)

Abstract:

The distribution and main controlling factors of organic matter carbonization points (zones) of over-mature marine shale are important issues for shale gas exploration. This paper focuses on the Lower Cambrian and Lower Silurian shale in the Sichuan Basin and its periphery. Based on the detailed anatomy of key carbonization areas, predictions of shale organic matter carbonization areas and regional mapping of thermal maturity are carried out to explore and reveal the distribution and main controlling factors of the carbonization zones of organic matter in the two sets of shales.Four preliminary conclusions were obtained:(1)In the Lower Silurian shale distribution area,there are four organic matter carbonization zones,namely,eastern Sichuan-western Hubei, nor-thwestern Hubei,southern Sichuan and Renhuai-southwestern Chongqing,covering an area of nearly 40 000 km2,of which the main part of the western carbonization zone in southern Sichuan is located in the Emei basalt distribution area. (2)In the Lower Cambrian shale distribution area, the organic carbonization area accounts for more than 80%. The non-carbonization area is only distributed in Weiyuan-Ziyang, Moxi-Gaoshiti, Changyang and Weng'an-Zhenyuan with an area of about 62 600 km2. (3)The Emei igneous rock event was an extreme heat event in the Late Permian, which increased the thermal maturity RO value of the Lower Silurian and Lower Cambrian shale in the western part of southern Sichuan by 0.2%-0.4% and 0.2%-1.0%, respectively. Mabian-Ebian is located in the high-value area of the Emei basalt thickness, and is also the area with the highest degree of carbonization of organic matter in the Lower Cambrian and Lower Silurian shale. (4)The main controlling factors of organic matter carbonization of the Lower Cambrian and Lower Silurian shale have similarities and differences. The main controlling factor of the former is the long-term deep burial background, and the extremely thermal event in the Late Permian only made the degree of carbonization in some areas more serious.The latter’s main controlling factors are relatively complex, and are controlled by deep burial background in the three regions of Renhuai-southwestern Chongqing, eastern Sichuan-western Hubei, and northwestern Hubei. In western Sichuan, it was controlled by deep burial background and high ground temperature in Late Permian.

Key words: Sichuan Basin, Lower Cambrian, Lower Silurian, Thermal maturity, Carbonification of organic matters, Low resistance response, Emei igneous rock province

CLC Number: 

  • TE122.1

Fig.1

Distribution map of thermal lithosphere thickness and important data points in Sichuan Basin"

Fig. 2

Stratigraphic comprehensive column of Longmaxi Formation in Heizhugou section, Ebian"

Fig.3

OM laser Raman spectras in typical carbonization zones of Longmaxi Formation in southern Sichuan"

Table 1

Thickness statistics of Emei volcanic rocks in western part of southern Sichuan"

区块上二叠统火山岩厚度/m参考资料
绥江—永善221~341文献[11
盐津295~345文献[12-13
屏山50~100文献[14
天宫堂100~150文献[15
沐川120~160文献[16
峨边250~350文献[14
马边360~700文献[17
雷波430~560文献[17
威信石子沟300文献[18
珙县西81.2文献[11
水富160文献[11

Fig. 4

Stratigraphic comprehensive column of Wufeng Formation - Longmaxi Formation in Well JYT1 in southwestern Chongqing"

Table 2

Longmaxi Formation test data of Well JYT1 in southwestern Chongqing"

井深/mTOC/%测井电阻率/(Ω·m)实验测试项目
干样电阻率/(Ω·m)核磁孔隙度/%拉曼RO/%
4 314.94.296.5~7.542.14.0(3.49~3.57)/3.52
4 317.03.935.8~6.532.44.2(3.47~3.54)/3.51

Table 3

Geologic parameters of Longmaxi Formation in main carbonization zones in the Sichuan Basin and surrounding regions (according to Refs.[7,20])"

井号/剖面区块埋深/mTOC/%拉曼RO/%孔隙度/%自然伽马 /API电阻率 /(Ω·m)含气量/(m3/t)有机质炭化程度保存条件
LY1鄂西2 790~2 8301.1~6.03.56~3.73

(1.90~4.77)

/2.76

150~2700.1~0.90.13~0.48严重炭化

盆外向斜区,

保存条件较好

HY1鄂西2 142~2 1661.5~5.33.80~4.00150~270

(0.01~0.30)

/0.2

微气严重炭化

盆外向斜区,

保存条件较好

X202川东北1 965~1 9890.5~6.43.48~3.51

(2.40~8.78)

/3.85

145~3003~71.38~3.00, 试产为微气弱炭化盆外褶皱带,龙马溪组具自封盖性,保存条件中等
TY1川东>3 9002.0~5.03.50~3.55150~350(2~6)/4微气,压力系数 小于1弱炭化

盆地内,保存

条件好

YYY1

川南

西部

2 900~3 0701.9~9.03.6~3.9120~2500.12~0.3<0.2严重炭化

盆内向斜区,

保存条件较好

Y201

川南

西部

3 500~3 6603.60~3.801.2160~3000.6~2严重炭化

位于盆地内,

保存条件好

RY1仁怀4 030~4 0551.9~6.53.50~3.60

(0.50~2.30)

/0.74

180~2501.8~8.00.51弱炭化

盆地内,保存

条件好

城口

明中

川东北露头1.7~6.1

(0.26~2.63)

/0.80

180~521弱炭化

位于盆地外,

保存条件差

巫溪

白鹿

川东北露头1.9~8.0

(0.66~1.58)

/1.05

180~310弱炭化

位于盆地外,

保存条件差

Table 4

Geologic parameters of Lower Cambrian shale in key outcrop sections and wells in the Sichuan Basin and its periphery"

剖面/钻井区块层位地层厚度 /m埋深/m富有机质页岩基本地质参数有机质激光拉曼谱参数孔隙度/%含气量/(m3/t)有机质 炭化程度
厚度/mTOC/%

测井电阻率

/(Ω·m)

峰间距/cm-1峰高比拉曼RO/%
马边大风顶川南西部麦地坪组>402248.95~256.661.6~1.88(4.62~4.94)/4.70严重炭化
永善务基川南西部筇竹寺组37728(0.56~4.83)/2.80246.01~259.941.00~1.47(3.92~4.48)/4.20严重炭化
N206川南筇竹寺组2101 680~1 89440(1.90~7.11)/3.300.1~2.0(3.86~4.09)/3.90

(1.43~2.01)

/1.66

无气严重炭化
遵义松林中南村黔北筇竹寺组40>30(0.31~12.79)/4.92265.39~268.230.76~0.783.64~3.67严重炭化
湄潭梅子湾黔北牛蹄塘组>3223(1.08~7.17)/4.03266.810.713.40未炭化
瓮安永和黔北牛蹄塘组135111(0.56~8.26)/5.39256.870.673.10未炭化
镇远青溪黔北牛蹄塘组>11052.5(0.85~13.06)/4.92262.550.693.44未炭化
松桃响水洞黔北牛蹄塘组>100>30(1.34~12.01)/7.65263.97~272.480.78~0.89(3.67~3.80)/3.70严重炭化
古丈默戎湘西牛蹄塘组217>50(1.72~7.87)/5.4262.18~274.800.83~0.87(3.72~3.77)/3.75严重炭化
鹤峰白果坪鄂西水井沱组>200>30(1.38~9.11)/4.54249.56~253.770.94~1.10(3.86~4.04)/3.95严重炭化
峡东王家坪鄂西水井沱组26.6617.3(0.88~4.68)/3.33250.97~259.380.62~0.632.9~3.2未炭化
长阳白竹岭鄂西水井沱组152.355(1.23~9.06)/4.10274.80~277.610.67~0.703.55~3.58弱炭化
YT2鄂西水井沱组595 001~5 06033.0~6.03.50~3.55微气显示弱炭化
巫溪长丈村川东北筇竹寺组>200269.74~278.260.70~0.77(3.58~3.65)/3.62严重炭化
城口新军村川东北筇竹寺组300155(0.27~6.01)/2.23268.00~274.000.62~0.71(3.48~3.58)/3.53弱炭化
WT1川东北筇竹寺组1207 172~7 292241.2~2.03.60~3.80<2无气严重炭化
南江沙滩川北筇竹寺组>21041(1.00~4.78)/3.16271.16~272.580.73~0.80(3.52~3.69)/3.60严重炭化
广元东溪河川西北筇竹寺组>500>170(1.74~3.43)/2.81241.34~244.181.10~1.42(4.04~4.42)/4.32严重炭化
JT1川西北筇竹寺组3747 045~7 41970.1~0.8>3.7%严重炭化
绵阳锄巴沟川西麦地坪组>80>10264.14~266.340.55~0.683.40~3.55弱炭化

Fig. 5

OM laser Raman spectras of Lower Cambrian shale in key blocks in the Sichuan Basin and its periphery"

Fig. 6

RO distribution of the Lower Silurian Longmaxi Formation in the Sichuan Basin and its periphery"

Fig. 7

RO distribution of Lower Cambrian shale in the Sichuan Basin and its periphery"

Fig. 8

The relationship between RO of marine shale and the thickness of Emei igneous rock in west part of southern Sichuan"

Fig.9

Hydrocarbon inclusions of Longmaxi Formation in Changning area"

Fig.10

Buried history map of stratas in Changning and its periphery"

Fig.11

Buried history map of stratas in eastern Sichuan-western Hubei(modified according to the Refs.[28-29])"

1 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.
ZHAO W Z,LI J Z,YANG T,et al. Geological difference and its significance of marine shale gases in south China[J]. Petroleum Exploration and Development,2016,43(4): 499-510.
2 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016,43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166-178.
3 王玉满,李新景,陈波,等.海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发,2018,45(3):385-395.
WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395.
4 王玉满, 董大忠, 程相志, 等. 海相页岩有机质碳化的电性证据及其地质意义: 以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业, 2014, 34(8): 1-7.
WANG Y M, DONG D Z, CHENG X Z, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7.
5 刘德汉,肖贤明,田辉,等.固体有机质拉曼光谱参数计算样品热演化程度方法与地质应用[J]. 科学通报, 2013, 58(13):1228-1241.
LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.
6 蒋珊,王玉满,王书彦,等.四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J].天然气工业, 2018, 38(10): 19-27.
JIANG S, WANG Y M, WANG S Y, et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 19-27.
7 王玉满,李新景,王皓,等. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学,2020,31(2):151-162.
WANG Y M,LI X J,WANG H,et al. Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze region[J].Natural Gas Geoscience,2020,31(2):151-162.
8 刘绍文,王良书,李成,等. 塔里木北缘岩石圈热一流变结构及其地球动力学意义[J]. 中国科学(D辑), 2003, 33(9): 852-863.
LIU S W, WANG L S, LI C, et al. Thermal transformation structure of the lithosphere in the northern margin of Tarim and its geodynamic significance[J]. Science in China(Series D), 2003, 33(9): 852-863.
9 汪洋,程素华. 中国西部及邻区岩石圈热状态与流变学强度特征[J]. 地学前缘, 2013, 20(1): 182-189.
WANG Y,CHENG S H. Thermal state and rheological strength of the lithosphere beneath western part of China and its adjacent region[J]. Earth Science Frontiers,2013,20(1):182-189.
10 魏国齐, 贾东, 杨威, 等. 四川盆地构造特征与油气[M]. 北京:科学出版社,2019:1-136.
WEI G Q,JIA D,YANG W,et al.Structural Features and Oil & Gas in the Sichuan Basin[M].Beijing:Science Press,2019:1-136.
11 罗志立,金以钟,朱夔玉,等. 试论上扬子地台的峨眉地裂运动[J]. 地质论评, 1988, 34(1): 11-24.
LUO Z L, JIN Y Z, ZHU K Y, et al. On Emei taphrogenesis of the Upper Yangtze Platform[J]. Geological Review, 1988, 34(1): 11-24.
12 刘建清,何利,胡宇瀚, 等. 四川雷波峨眉山玄武岩岩石学及地球化学特征[J]. 地球学报,2020,41(3):325-336.
LIU J Q, HE L,HU Y H,et al.The petrological and geochemical characteristics of Emei Shan basalt in Leibo County, Sichuan Province[J].Acta Geoscientica Sinica,2020,41(3):325-336.
13 马健飞,沙小保,刘建清,等. 盐津地区峨眉山玄武岩地球化学特征及成因分析[J]. 矿物岩石, 2019, 39(2): 25-33.
MA J F, SHA X B, LIU J Q, et al. Geochemical characteristics and genesis of Emeishan basalt in Yanjin area[J]. Journal of Mineralogy Petrology,2019,39(2):25-33.
14 朱江. 峨眉山大火成岩省地幔柱动力学及其环境效应研究[D]. 北京:中国地质大学(北京),2019.
ZHU J. A Study of Mantle Plume Dynamics and It's Environmental Effect in the Emeishan Large Igneous Province[D]. Bei-jing:China University of Geosciences(Beijing), 2019.
15 李天元. 川西南峨眉山玄武岩堆积序列及岩性岩相特征[D].北京:中国地质大学(北京),2020.
LI T Y. The Accumulation Sequence and Lithologic and Lithofacies Characteristics of the Basalt in Mount Emeishan, Southwest Sichuan[D].Beijing:China University of Geosciences(Bei-jing),2020.
16 程文斌,董树义,金灿海, 等. 四川省沐川地区峨眉山玄武岩元素地球化学特征与成因探讨[J]. 矿物岩石, 2019, 39(4): 49-69.
CHENG W B, DONG S Y,JIN C H, et al. Characteristics of elemental geochemistry and petrogenesis discussion of the Emeishan basalts in Muchuan area, Sichuan Province[J]. Journal of Mineralogy and Petrology, 2019, 39(4): 49-69.
17 杨辉,马继跃,朱兵,等. 四川马边、雷波地区峨眉山玄武岩地球化学特征及其成因[J]. 四川地质学报,2018,38(1):27-38.
YANG H, MA J Y, ZHU B, et al. Geochemical characteristics and genesis of the Emeishan basalt in the Mabian-Leibo region,Sichuan[J].Acta Geologica Sichuan,2018,38(1):27-38.
18 周叔齐.云南昭通威信地区玄武岩的地球化学特征及其尖灭边界研究[D]. 桂林:桂林理工大学, 2019.
ZHOU S Q. Geological,Geochemical Characteristics and Its Boundary of Basalts in Weixin Area,Yunnan[D]. Guilin:Guilin University of Technology, 2019.
19 王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.
WANG Y M,SHEN J J,QIU Z,et al. Characteristics and environmental significance of concretion in the Lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J].Natural Gas Geoscience,2021,32(9):1308-1323.
21 PIANE C D, BOURDET J, JOSH M, et al. Organic matter network in postmature Marcellus shale: Effects on petrophysical properties[J]. AAPG Bulletin,2018,102(11):2305-2332.
20 王玉满, 李新景, 董大忠, 等. 四川盆地及周缘志留系页岩典型剖面地质特征[M]. 北京:石油工业出版社, 2021:1-310.
WANG Y M, LI X J, DONG D Z, et al. Geologic Characteristics of Type Section of Silurian Shale in the Sichuan Basin and Its Adjacent Areas[M].Beijing:Petroleum Industry Press, 2021: 1-310.
22 SPOÈTL C, HOUSEKNECHT D W, JAQUES R C. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study[J]. Organic Geochemistry, 1998, 28(9-10): 535-542.
23 徐义刚,何斌,罗震宇,等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报, 2013, 32(1): 25-39.
XU Y G,HE B,LUO Z Y,et al. Study on mantle plume and large igneous provinces in China: An overview and perspectives[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2013, 32(1): 25-39.
24 何斌,徐义刚,肖龙,等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2): 194-202.
HE B,XU Y G,XIAO L, et al. Generation and spatial distribution of the Emeishan Large Igneous Province: New evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003,77(2):194-202.
25 彭浩,尹成,何青林,等.川西地区二叠系热碎屑流火山岩发育特征及其油气地质意义[J]. 石油勘探与开发, 2022, 49(1):56-67.
PENG H,YIN C, HE Q L, et al. Development characteristics and petroleum geological significance of Permian pyroclastic flow volcanic rocks in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2022,49(1):56-67.
26 王一刚,余晓锋,杨雨,等. 流体包裹体在建立四川盆地古地温剖面研究中的应用[J]. 地球科学(中国地质大学学报), 1998, 23(3):285-288.
WANG Y G,YU X F,YANG Y,et al.Applications of fluid in-clusions the paleo-geotemperature in Sichuan Basin[J]. Earth Science (Journal of China University of Geosciences),1998,23(3):285-288.
27 LIU W, QIU N,XU Q,et al. Precambrian temperature and pressure system of Gaoshiti-Moxi block in the central paleo-uplift of Sichuan Basin,southwest China[J].Precambrian Rese-arch, 2018, 313: 91-108.
28 刘成林,李景明,蒋裕强,等. 川东小河坝砂岩天然气成藏地球化学研究[J]. 西南石油学院学报,2002,24(1):46-50.
LIU C L, LI J M, JIANG Y Q, et al. Geochemistry research of natural gas reservoir formation of Xiaoheba Fm of Lower Silurian in the eastern Sichuan Basin[J]. Journal of Southwest Petroleum Institute, 2002, 24(1): 46-50.
29 曹环宇, 朱传庆, 邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报,2016,59(3):1017-1029.
CAO H Y, ZHU C Q, QIU N S. Maximum paleotemperature of main Paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics,2016,59(3):1017-1029.
[1] Xuan ZHANG,Qi RAN,Kang CHEN,Benjian ZHANG,Chen ZHANG,Bingshan MA,Qian MA,Shihu WU. The controlling effect of strike-slip fault on Dengying Formation reservoir and gas enrichment in Anyue Gas Field in central Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(6): 917-928.
[2] Qiang LIU,Xuesong LU,Junjia FAN,Shaobo LIU,Xingzhi MA,Bokai DAI,Lili GUI,Weiyan CHEN. Evidence and controlling factors of thermochemical sulfate reduction in the Sinian gas reservoirs, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(6): 929-943.
[3] Xiaofeng ZHOU, Xizhe LI, Wei GUO, Xiaowei ZHANG, Pingping LIANG, Junmin YU. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng-Longmaxi formations, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(5): 775-788.
[4] Bei WANG, Xian PENG, Qian LI, Juan WANG, Xi FENG, Juan SHE, Tao LI, Junjun CAI. Type of infiltration and development response pattern of ultra-deep gas reservoir in the Qixia Formation, northwestern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 520-532.
[5] Xin HU, Yufeng WANG, Senqi PEI, Qi ZENG, Rongrong LI, Hongyu LONG, Tanglü LI, Siyu ZHOU, Haitao SUN. Sedimentary evolution and its influence on karst reservoir development of the Middle Permian Maokou Formation in the northwestern Sichuan Basin, China [J]. Natural Gas Geoscience, 2022, 33(4): 572-587.
[6] Xiaoyan ZOU, Xianqing LI, Yuan WANG, Jizhen ZHANG, Pei ZHAO. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
[7] Guoli WANG,Xiaobo SONG,Yong LIU,Xianwu MENG,Ke LONG. Natural gas accumulation characteristics and exploration prospects of the 4th member of Leikoupo Formation in the western Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 333-343.
[8] Han XU,Mingjie LIU,Zhuang ZHANG,Sujuan YE,Yingtao YANG,Ling WU,Ling ZHANG,Hongli NAN,Xiucheng TAN,Wei ZENG,Chengbo LIAN. Diagenesis and porosity evolution of the 3rd member of Xujiahe Formation tight sandstone reservoir in the Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 344-357.
[9] Xu GUAN,Jineng JIN,Wei YANG,Xiaojuan WANG,Changjiang WU,Yongling OUYANG. Lithologic gas reservoir characteristics and prediction of gas-bearing favorable zone of the Xujiahe Formation in central Sichuan Basin:Case study of the 2nd member of Xujiahe Formation in Anyue-Moxi areas [J]. Natural Gas Geoscience, 2022, 33(3): 358-368.
[10] Wei WANG,Limei REN,Jiaju LIANG,Song TANG,Haifeng YUAN,Yuhan LI. Characteristics and hydrocarbon generation potential of Middle Permian marine source-rocks in central Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(3): 369-380.
[11] Jiawei LIU,Hu ZHAO,Yi WANG,Wenjin ZHANG,Kang CHEN,Zhixin DI. Distribution characteristics and hydrocarbon geological significance of Permain volcanic rocks in Longhuichang-Longmen areas, eastern Sichuan Basin, SW China [J]. Natural Gas Geoscience, 2022, 33(3): 381-395.
[12] Yongjin ZHU, Jianfeng ZHENG, Lingli LIU, Guang FENG, Feng WU, Lei YAN, Tianfu ZHANG. Lithofacies paleogeography and exploration significance of Lower Cambrian Wusonger Formation depositional stage, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2022, 33(1): 1-12.
[13] Ronghui FANG, Xiaoqiang LIU, Cong ZHANG, Meijun LI, Xianghua XIA, Zhilong HUANG, Chengyu YANG, Qiuya HAN, Hanqin TANG. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province [J]. Natural Gas Geoscience, 2022, 33(1): 138-152.
[14] Hu ZHAO, Yidan FENG, Yi WANG, Shilin LI, Liangjun XU, Zhixin DI, Binrui ZHU. Seismic geological characteristics and exploration prospect of tight sandstone in Lianggaoshan Formation of Gaofengchang block, eastern Sichuan Basin, China [J]. Natural Gas Geoscience, 2022, 33(1): 153-167.
[15] Yunyan NI, Limiao YAO, Jianli SUI, Jianping CHEN. Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water [J]. Natural Gas Geoscience, 2022, 33(1): 78-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!