Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (5): 677-692.doi: 10.11764/j.issn.1672-1926.2022.01.009

    Next Articles

Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin

Yong TANG1(),Menglin ZHENG1,Xiatian WANG1,Tao WANG1,Zaibo XIE2,3(),Zhen QIN2,3,Chenlu HEI4,Hu CHENG4,Yuan GAO4,Huifei TAO2   

  1. 1.Petroleum Exploration and Development Institute,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
    2.Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
    4.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
  • Received:2021-11-19 Revised:2022-01-09 Online:2022-05-10 Published:2022-05-12
  • Contact: Zaibo XIE E-mail:tyong@petrochina.com.cn;xiezaibo20@mails.ucas.ac.cn
  • Supported by:
    The National Natural Science Foundation of China(41502142);the Natural Science Foundation of Gansu Province, China(18JR3RA396)

Abstract:

An important set of source rocks is developed in Fengcheng Formation of Lower Permian in Junggar Basin. This research took full advantages of ICP-MS, XRF in the measurements around major elements and trace elements, along with biomarkers of saturated hydrocarbons in 25 source rock samples from Fengcheng Formation in Well Maye 1, Mahu Sag. Based on previous research results, the geochemical characteristics and sedimentary paleoenvironment of the source rocks of Fengcheng Formation in Mahu Sag were comprehensively studied. The research demonstrated that the sedimentary evolution of Fengcheng Formation can be divided into five stages. The first and second stages (sedimentary period of Feng1 section) were mainly defined as evaporation and salinization. In the third and fourth stages (sedimentary period of Feng2 section), calcium and magnesium carbonate deposits, as well as sodium carbonate deposits were salinized and alkalized under the influence of hydrothermal action. In the fifth stage (sedimentary period of Feng3 section), tuffaceous mudstone and terrigenous clastic rock were deposited under the condition of volcanic activities and damp climate, while the desalination took the role of primary reaction. Accordingly, the water depth of the lake basin developed in Mahu Sag changed periodically and became gradually shallower in general. The corresponding paleo-salinity evolution characteristics of lake water were light-semi-saline-saline-semi-saline-light, while the paleoclimate evolution features are semi-arid-humid-semi-arid-arid-semi-arid, but the semi-arid-arid climate performed generally. The grain size and sedimentary tectonic changes of clastic rocks in Fengcheng Formation can be used as an appropriate environmental index, while the deposition of Fengcheng Formation was controlled by volcanic activities and paleoclimate, as the preservation of organic matter was closely related to paleo-bathymetric and redox preservation conditions of water body. The arid climate results in a large amount of evaporation of water, promoting salinization, while hydrothermal action provides a general series of nutrients, and promotion of the alkaline lake.

Key words: Alkaline-lacustrine source rocks, Geochemical characteristics, Paleoenvironment evolution, Feng-cheng Formation, Mahu Sag

CLC Number: 

  • TE122.2

Fig.1

Tectonic setting and sampling location of Mahu Sag in Junggar Basin(modified by Ref.[3])"

Fig.2

Sedimentary model of Fengcheng Formation in Mahu Sag(modified from Ref.[1])"

Fig.3

Lithologic columns, logging data and sedimentary environment of Fengcheng Formation in Well Maye1"

Table 1

Major element analysis results of different depth source rocks of Fengcheng Formation of Lower Permian in Well Maye 1, Mahu Sag"

层位序号深度/mTOCK2OCaONa2OMgOAl2O3SiO2P2O5Fe2O3MnOTiO2LOICIAICV
P1f314 5822.552.579.491.083.0510.6853.300.094.630.070.5310.540.452.00
24 5900.612.767.615.071.8613.4854.890.264.510.100.567.220.471.66
34 6010.225.654.672.794.2811.0057.340.084.320.090.487.750.462.02
44 6110.348.024.321.904.2612.0255.160.054.050.070.376.960.461.91
54 6180.612.528.721.329.784.9352.950.022.510.060.2115.130.285.08
平均值0.874.306.962.434.6510.4254.730.104.000.080.439.520.422.53
P1f264 6270.174.024.494.334.7812.0855.110.075.820.110.607.710.481.99
74 6470.135.461.644.992.2714.5659.840.095.800.080.464.210.551.42
84 6601.012.8110.053.037.548.0746.860.083.600.090.4515.090.343.41
94 6800.364.782.754.913.7713.2656.250.076.840.120.666.560.521.79
104 6900.283.428.213.187.238.7450.940.033.230.110.3112.360.372.93
114 7101.062.7511.954.195.128.7942.200.114.840.110.3714.320.323.32
124 7200.983.079.792.269.976.7144.970.023.570.080.5115.970.314.35
134 7401.444.026.602.668.938.9649.510.024.020.070.4712.840.402.98
144 7600.964.817.511.546.177.7154.670.032.910.070.2811.920.363.01
154 7701.073.8710.503.285.139.8946.410.084.180.090.4212.480.362.77
164 7900.541.9313.251.529.564.4443.980.022.280.070.1920.240.216.47
174 8000.474.7810.701.108.566.7146.050.033.130.070.2816.220.294.25
平均值0.713.818.123.086.599.1649.730.054.190.090.4212.490.373.22
P1f1184 8200.204.547.212.064.1813.1852.580.085.950.100.608.050.491.86
194 8300.594.779.832.407.599.1745.480.063.370.080.3014.060.353.08
204 8401.117.405.841.044.999.7656.990.022.330.070.159.470.412.23
214 8520.869.998.310.383.9811.4243.330.023.920.102.999.030.382.59
224 8620.863.0610.250.908.774.7851.770.032.250.080.2316.100.255.33
234 8700.071.508.085.126.7514.4645.220.349.400.181.856.310.502.26
244 8800.697.465.092.891.6412.8657.590.064.340.100.494.170.451.70
254 9101.825.695.534.142.6212.9853.840.084.070.310.448.000.461.73
平均值0.785.557.522.375.0711.0850.850.094.450.130.889.400.412.60
上地壳111.886.403.204.4015.8049.500.206.600.140.70
北美页岩123.243.111.302.4415.4058.100.174.020.120.65

Table 2

Analysis results of trace elements in different depth source rocks of Lower Permian Fengcheng Formation in Well Maye1, Mahu Sag"

层位序号深度/mLiScCrCoNiCuZnGaSrMoVCdBaPbThU
P1f314 582906.1049.915.763.846.429.516.42692311720.2343121.083.782.58
24 5902810.5944.311.947.434.156.318.23072.91330.061899.936.642.91
34 6012038.0337.68.325.612.127.410.426633.41040.1018511.582.541.90
44 6111761.8529.18.221.09.826.413.042563.2830.051385.410.391.31
54 6185180.2834.75.923.48.911.45.438713.6630.041077.910.110.91
平均值2035.3739.110.036.222.330.212.733168.91110.1021011.182.691.92
P1f264 62718115.8152.513.051.116.546.515.02135.9960.0922311.843.721.16
74 6471027.2440.110.938.613.624.319.12652.6680.0842711.584.521.10
84 6604477.4134.07.520.937.345.812.06 02919.11020.0872411.324.393.17
94 6801998.1550.814.961.143.6100.221.81992.51100.0924811.183.021.38
104 6904282.9629.85.121.57.719.015.054531.7910.061598.591.111.96
114 7103719.0344.610.329.853.949.58.869727.41240.1480214.005.383.69
124 7207637.6934.39.624.230.459.314.671836.41140.1318511.460.843.21
134 7407427.1432.69.121.032.956.616.63819.71110.1019413.051.172.34
144 7604064.5926.96.217.725.839.114.661619.5880.072619.031.202.61
154 7708411.0146.28.625.643.347.417.162941.4970.0939411.142.071.97
164 7901924.7827.34.916.315.132.13.71 23813.6910.052705.481.432.17
174 8005031.4241.86.422.922.031.610.693947.91170.082636.691.192.08
平均值3408.1038.48.929.228.545.914.11 03921.51010.0934610.452.502.24
P1f1184 82010811.40104.616.698.345.971.419.72767.5820.0839910.871.620.88
194 8302494.7440.97.525.323.132.916.558017.4820.062037.041.921.87
204 8402264.3115.43.716.111.517.815.74629.5470.05848.120.573.61
214 852406.8245.09.522.724.554.613.82 4338.7600.058005.151.722.95
224 8622302.8321.25.218.024.625.24.15454.2890.09917.301.373.29
234 8703321.06169.435.248.034.590.319.23900.62400.054091.590.400.27
244 880278.82157.17.543.918.452.022.72553.1650.071237.402.310.49
254 910712.17156.410.448.121.446.420.62532.6740.2832710.384.295.38
平均值1159.0288.811.940.125.548.816.56496.7920.093047.231.772.34
上地壳1122119255124731632513139012.605.601.40
北美页岩1210019688030013058020.0012.003.70

Table 3

REE analysis results of different depth source rocks of Lower Permian Fengcheng Formation in Well Maye1, Mahu Sag"

层位序号

深度

/m

∑REE∑LREE∑HREE

∑LREE/

∑HREE

(La/Yb)N(Ce/Yb)N(Gd/Yb)NδEuSδEuNδCeSδCeNCeanom
P1f314 58284.467.616.84.03.412.190.900.840.620.790.83-0.10
24 590236.1205.330.86.75.825.191.820.910.660.860.95-0.02
34 60183.873.510.37.17.625.211.501.100.810.860.89-0.07
44 61124.120.43.75.54.362.910.971.130.830.820.86-0.09
54 61831.428.72.610.910.966.000.981.000.720.750.77-0.14
平均值91.979.112.86.96.434.301.230.990.730.820.86-0.09
P1f264 627102.789.013.86.56.083.931.160.950.700.810.84-0.09
74 64797.088.09.09.713.127.181.741.060.770.730.75-0.15
84 66086.869.017.83.93.082.771.021.000.750.951.030.01
94 68081.068.712.35.65.564.741.750.950.700.951.020.00
104 69050.042.17.95.35.263.111.060.910.670.770.80-0.13
114 710128.3101.726.73.85.865.133.220.950.720.900.98-0.02
124 72062.754.18.66.34.923.790.860.910.670.930.98-0.02
134 74038.532.85.75.84.893.730.840.990.730.961.00-0.02
144 76079.372.86.611.111.448.651.561.010.730.920.97-0.03
154 77086.274.611.66.47.045.351.771.030.760.870.93-0.05
164 79053.246.27.06.66.785.641.740.990.730.931.00-0.01
174 80094.986.28.79.910.148.672.051.040.740.910.98-0.01
平均值80.168.811.36.77.025.221.560.980.720.880.94-0.04
P1f1184 82080.670.110.56.75.984.931.401.110.820.930.99-0.01
194 83060.253.27.07.67.876.462.060.990.720.880.95-0.04
204 84031.828.53.38.67.966.851.660.980.710.951.020.01
214 852116.4106.110.310.315.1712.443.091.120.820.910.98-0.02
224 86278.461.317.13.63.312.851.530.860.640.910.98-0.01
234 87085.563.422.12.91.881.951.501.401.050.891.000.00
244 880127.6110.417.26.47.525.571.840.800.590.820.88-0.06
254 910194.6101.493.11.10.860.690.800.380.290.870.93-0.05
平均值96.974.322.65.96.325.221.740.960.700.890.97-0.02

Fig.4

Micromorphology of alkali minerals in Fengcheng Formation of Lower Permian in Mahu Sag"

Table 4

Classification of rock types of Fengcheng Formation in Well Maye1"

序号岩石类型包含的岩性主要分布层位
1火山岩类安山岩、玄武岩风一段、风二段底部
2火山碎屑岩类

熔结凝灰岩、凝灰岩、凝灰质粉砂岩、

凝灰质砂岩、凝灰质砂砾岩

风一段、风三段
3白云质岩类

白云质粗砂岩、白云质细砂岩、

白云质粉砂岩、泥质白云岩

风二段
4硅质岩类燧石条带、燧石结核风二段顶部和风三段底部
5陆源碎屑岩类

泥质细砂岩、泥岩、灰质泥岩、

粉砂质泥岩、泥质粉砂岩

风三段
6变质泥岩类浅变质泥岩风一段、风三段

Fig.5

Volcanic rocks of Fengcheng Formation of Lower Permian in Mahu Sag"

Fig.6

Dolomitic rocks of Fengcheng Formation of Lower Permian in Mahu Sag"

Fig.7

Characteristics of siliceous rocks in Fengcheng Formation of Lower Permian in Mahu Sag"

Table 5

Analysis and calculation of rock elements in Fengcheng Formation, Mahu Sag"

层位参数古水深古氧化还原环境古气候古盐度
(Mn/Fe)×100M值Th/UV/(V+Ni)气候指数CSr/CuNi/(μg/g)Li/(μg/g)
P1f3最大值2.65198.382.290.80.3743.5263.8517.68
最小值1.6713.80.120.730.135.7921.0328.35
平均值2.2774.891.040.760.2527.4334.27253.12
P1f2最大值10.07235.414.110.851.2161.872.751 128.61
最小值1.54.130.140.620.14.563.22.9
平均值2.8687.521.140.770.2939.7426.06294.86
P1f1最大值8.44183.474.730.830.6199.2998705
最小值1.4612.750.160.460.116.01117
平均值3.1562.741.110.730.2434.9835194

Fig.8

Longitudinal variation of paleoenvironmental geochemical parameters in Fengcheng Formation"

Fig.9

Relationship between Sr/Cu Value and climate index C"

Fig.10

Relation characteristics between Li and Ni"

Fig.11

Model diagram of sedimentary evolution of Fengcheng Formation"

1 匡立春,唐勇,雷德文,等.准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J].石油勘探与开发, 2012,39(6):657-667.
KUANG L C, TANG Y, LEI D W, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2012,39(6):657-667.
2 曹剑,雷德文,李玉文,等.古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J].石油学报, 2015,36(7):781-790.
CAO J, LEI D W, LI Y W, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fencheng Formation, Junggar Basin[J].Acta Petrolei Sinica,2015,36(7):781-790.
3 支东明,曹剑,向宝力,等.玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J].新疆石油地质,2016,37(5):499-506.
ZHI D M, CAO J, XIANG B L, et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin:Hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology,2016,37(5):499-506.
4 支东明,宋永,何文军,等.准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向[J].新疆石油地质,2019,40(4): 389-401.
ZHI D M, SONG Y, HE W J, et al. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower Permian,Junggar Basin[J]. Xinjiang Petroleum Geology,2019,40(4): 389-401.
5 CAO J, XIA L W, WANG T T, et al. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091.
6 雷德文,陈刚强,刘海磊,等.准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究[J].地质学报,2017,91(7):1604-1619.
LEI D W, CHEN G Q, LIU H L, et al. Study on the forming conditions and exploration fields of the Mahu giant oil(gas) province, Junggar Basin[J].Acta Geologica Sinica,2017,91(7):1604-1619.
7 达江,宋岩,赵孟军,等.前陆盆地冲断推覆作用与烃源岩演化[J].天然气工业,2007,27(3):17-19.
DA J, SONG Y, ZHAO M J, et al. Relationship between overthrusting and source rock evolution in foreland basin[J]. Natural Gas Industry,2007,27(3):17-19.
8 张元元,李威,唐文斌.玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J].新疆石油地质,2018,39(1): 48-54.
ZHANG Y Y, LI W, TANG W B. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology,2018,39(1):48-54.
9 BIAN W H, HORNUNG J, LIU Z H, et al. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, northwest China[J]. Palaeoenvironments,2010,90(3):175-186.
10 秦志军,陈丽华,李玉文,等.准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J].新疆石油地质,2016,37(1):1-6.
QIN Z J, CHEN L H, LI Y W, et al. Paleo⁃sedimentary setting of the Lower Permian Fengcheng alkali lake in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology,2016,37(1):1-6.
11 BOYNTON W V. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite studies[J]. Developments in Geochemistry,1984, 2(2): 63-114
12 HASKIN L A. Rare earths in European shales: A redetermination[J]. Science,1966,154(3748): 507-511.
13 徐林刚, LEHMANN B, 张锡贵,等.云南昆阳磷矿黑色页岩微量元素特征及其地质意义[J].岩石学报,2014,30(6):1817-1827.
XU L G, LEHMANN B, ZHANG X G, et al. Trace element distribution in black shales from the Kunyang phosphorite deposit and its geological significances[J].Acta Petrologica Sinica,2014,30(6): 1817-1827.
14 陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社, 1990: 135-206.
CHEN D Q, CHEN G. Practical Rare Earth Chemistry[M]. Beijing: Metallurgical Industry Press,1990: 135-206.
15 潘晓添. 准噶尔盆地西北缘风城组湖相热液白云岩形成机理[D].成都:成都理工大学,2013.
PAN X T. Forming Mechanism of Fengcheng Formation of Lacustrine Hydrothermal Dolomite in the Junggar Basin in Northwestern Margin[D]. Chengdu:Chengdu University of Te-chnology,2013.
16 王绪龙.准噶尔盆地烃源岩与油气地球化学[M].北京:石油工业出版社,2013.
WANG X L. Source Rocks and Hydrocarbon Geochemistry in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2013.
17 鲁新川,张顺存,史基安.准噶尔盆地西北缘乌尔禾—风城地区二叠系风城组白云岩地球化学特征及成因分析[J].兰州大学学报(自然科学版),2012,48(6):8-14,20.
LU X C, ZHANG S C, SHI J A. Dolomite genesis and geochemical characteristics of Permian Fengcheng Formation in Wuerhe Fengcheng area, northwestern Junggar Basin[J]. Journal of Lanzhou University(Natural Sciences),2012,48(6):8-14,20.
18 MCLENNAN S M, HEMMING S R, TAYLOR S R. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidences from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta,1995,59(6):1153-1177.
19 朱世发,朱筱敏,刘英辉,等.准噶尔盆地西北缘北东段下二叠统风城组白云质岩岩石学和岩石地球化学特征[J].地质论评,2014,60(5):1113-1122.
ZHU S F, ZHU X M, LIU Y H, et al. Petrological and geochemical features of dolomitic rocks in the Lower Permian Fengcheng Formation in Wuerhe Xiazijie area, Junggar Basin[J].Geological Review,2014,60(5):1113-1122.
20 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1-4): 111-129.
21 LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis limestone,Wabaunsee County,Kansas,USA[J].Che-mical Geology,1992,99(1-3):65-82.
22 赵振华.微量元素地球化学原理[M].北京:科学出版社,1997: 225-236.
ZHAO Z H. Gochemical Principles of Trace Elements[M]. Beijing: Science Press,1997: 225-236.
23 王启宇,牟传龙,陈小炜,等.准噶尔盆地及周缘地区石炭系岩相古地理特征及油气基本地质条件[J].古地理学报,2014,16(5):655-671.
WANG Q Y,MOU C L,CHEN X W, et al. Palaeogeographic characteristics and basic geological conditions of petroleum of the Carboniferous in Junggar Basin and its adjacent areas[J].Journal of Palaeogeography,2014,16(5):655-671.
24 关有志.科尔沁沙地的元素、粘土矿物与沉积环境[J].中国沙漠,1992,12(1):9-15.
GUAN Y Z. The elements, clay minerals and sedimentary environment of Corqin sand[J].Journal of Desert Research,1992,12(1): 9-15.
25 郑一丁,雷裕红,张立强,等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学,2015,26(7):1395-1404.
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015, 26(7):1395-1404.
26 王敏芳,黄传炎,徐志诚,等.综述沉积环境中古盐度的恢复[J].新疆石油天然气,2006,2(1): 8-12.
WANG M F, HUANG C Y, XU Z C, et al. Review the recovery of paleosalinity in sedimentary environment[J]. Xinjiang Oil Gas, 2006,2(1):8-12.
27 MCCULLOCH M,CAPPOM,AUMEND J, et al. Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths[J]. Marine & Freshwater Research,2005,56(5):637-644.
28 WANG M S,ZHANG Z J,ZHOU C M, et al. Lithological characteristics and origin of alkaline lacustrine of the Lower Permain Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography,2018,20(1):147-162.
29 OWEN L A,FINKEL RC,BARNARD P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating[J].Qua-ternary Science Reviews, 2005,24(12-13):1391-1411.
30 刘俊英,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:422-428.
LIU J Y,CAO L M,LI Z L, et al. Elemental Geochemistry[M]. Beijing: Science Press,1984:422-428.
31 张志杰,袁选俊,汪梦诗,等.准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J].石油勘探与开发,2018,45(6): 972-984.
ZHANG Z J, YUAN X J, WANG M S, et al. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984.
[1] Zhenglin CAO,Pan LI,Ruiju WANG. Sequence architecture, slope-break development and hydrocarbon implications of the Mahu Sag during the P-T transition, Junggar Basin [J]. Natural Gas Geoscience, 2022, 33(5): 807-819.
[2] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[3] Xiaoqi WU, Yingbin CHEN, Yanqing WANG, Huasheng ZENG, Xiaoqiong JIANG, Ye HU. Geochemical characteristics of natural gas in tight sandstone of the Chengdu large gas field, Western Sichuan Depression, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1107-1116.
[4] Linghui CAI, Ye YU, Jianhua GUO, Yanran HUANG, Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province [J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
[5] Xun GONG, Hong-hui LI, Jun-long ZHANG, Yan-bin WANG, Zhao-hui XU, Shi-hu ZHAO, Lian-bin QIN. Characteristics of the Lower Cambrian shale and optimization of favorable shale gas areas in Tadong area [J]. Natural Gas Geoscience, 2021, 32(6): 899-913.
[6] Qing-chang RAN, Shu-ming CHEN, Xiang ZHOU. Geochemical characteristics and enrichment regularity of deep gas in Xingshan Sag, Songliao Basin [J]. Natural Gas Geoscience, 2021, 32(5): 727-737.
[7] Xiao-qi WU, Ying-bin CHEN, Chang-bo ZHAI, Xiao-jin ZHOU, Wen-hui LIU, Jun YANG, Xiao-bo SONG. Gas source and exploration direction of the Middle Triassic Leikoupo Formation in the Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1204-1215.
[8] Ping GUO. Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1306-1315.
[9] Dian-wei ZHANG, Zhi-liang HE, Gan-lu LI. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 428-435.
[10] Sen WANG, Ming-zhen ZHANG, Ai-jing LI, Jing ZHANG, Zhen DU, Bao-xia DU, Li-min JI, Xian-wen ZHANG. Organic geochemical characteristics of Qingtujing Formation coal⁃measure source rocks in the Chaoshui Basin and Minhe Basin, and their hydrocarbon⁃generation significances [J]. Natural Gas Geoscience, 2020, 31(2): 282-294.
[11] Zhi-yang GUO,Hua LIU,Bin CHENG,Gui-li YANG,Hao-qing XU,Zhi-qing ZHANG. Characteristics and source of oils and gases in Chengdao-Zhuangxi buried-hill, Jiyang Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2020, 31(10): 1437-1452.
[12] Mai ZHANG, Cheng-lin LIU, Ji-xian TIAN, Hao PANG, Xu ZENG, Hua KONG, Sai YANG. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam Basin [J]. Natural Gas Geoscience, 2020, 31(1): 61-72.
[13] Zhou Guo-xiao, Wei Guo-qi, Hu Guo-yi. Differences of continental hydrocarbon system between Longgang and Yuanba Gasfields in Sichuan Basin [J]. Natural Gas Geoscience, 2019, 30(6): 809-818.
[14] Wu Xiao-qi, Ni Chun-hua, Chen Ying-bin, Zhu Jian-hui, Li Kuang, Zeng Hua-sheng. Source of the Upper Paleozoic natural gas in Dingbei area in the Ordos Basin [J]. Natural Gas Geoscience, 2019, 30(6): 819-827.
[15] Li Jian, Hao Ai-sheng, Qi Xue-ning, Chen Xuan, Guo Jian-ying, Ran Qi-gui, Li Zhi-sheng, Xie Zeng-ye, Zeng Xu, Li Jin, Wang Yu, Liu Ru-hong, . Geochemical characteristics and exploration potential of Jurassic coal-formed gas in northwest China [J]. Natural Gas Geoscience, 2019, 30(6): 866-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Bao-zhen,WANG Yan-bin,XING Xi. QUANTITATIVE SIMULATION AND ITS APPLICATION ON SECONDARY HYDROCARBON GENERATION FROM SEDIMENTARY ORGANIC MATTERS[J]. Natural Gas Geoscience, 2007, 18(1): 107 -110 .
[2] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[3] WANG Li-qun,LI Biao,YANG Qing-hong,LI Qi-zheng,ZHAO Chun-ming. The Research and Application of Pressure Gradient on Invert 7-Spot Area Well Patterns[J]. Natural Gas Geoscience, 2013, 24(5): 1016 -1021 .
[4] Yang Fu-lin, Wang Tie-guan, Li Mei-jun. Geochemical study of Cambrian source rocks in the cratonic area of Tarim Basin,NW China[J]. Natural Gas Geoscience, 2016, 27(5): 861 -872 .
[5] Geng Meng, Chen Hao, Chen Zhen-hong, Li Gui-zhong, Deng Ze, Li Ya-nan. New recognization of CBM enrichment pattern and resource potential in China[J]. Natural Gas Geoscience, 2016, 27(9): 1659 -1665 .
[6] Xincai YOU, Gang GAO, Jun WU, Jianyu ZHAO, Shiju LIU, Yanjuan DUAN. Differences of effectivity and geochemical characteristics of the Fengcheng Formation source rock in Ma’nan area of the Junggar Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1697 -1708 .
[7] Jinhua FU, Wen GUO, Shixiang LI, Xianyang LIU, Dangxing CHENG, Xinping ZHOU. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749 -1761 .
[8] Ziyun ZHANG, Lianhua HOU, Xia LUO, Kun HE, Yan ZHANG. Hydrocarbon generation kinetics and in-situ conversion temperature conditions of Chang 7 Member shale in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1849 -1858 .
[9] . 1[J]. Natural Gas Geoscience, 2021, 32(12): 2112 -2113 .
[10] Bei WANG, Xian PENG, Qian LI, Juan WANG, Xi FENG, Juan SHE, Tao LI, Junjun CAI. Type of infiltration and development response pattern of ultra-deep gas reservoir in the Qixia Formation, northwestern Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(4): 520 -532 .