Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (4): 495-511.doi: 10.11764/j.issn.1672-1926.2021.12.001

    Next Articles

Investigation of shale permeability sensitivity mechanism based on digital core analysis

Lan REN1(),Jianjun WU2,Ran LIN1(),Jinzhou ZHAO1,Xiucheng TAN1,Jianfa WU3,Yi SONG3   

  1. 1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
    2.PetroChina Coalbed Methane Co. ,Ltd. ,Beijing 100028,China
    3.PetroChina Southwest Oil & Gasfield Company,Chengdu 610051,China
  • Received:2021-08-08 Revised:2021-11-18 Online:2022-04-10 Published:2022-04-22
  • Contact: Ran LIN E-mail:renlanswpu@163.com;bob_home@126.com
  • Supported by:
    The National Natural Science Foundation of China(Youth Program)(52104039);the National Natural Science Foundation of China(U19A2043);the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX030201)

Abstract:

Permeability is one of the most important parameters for reservoir exploitation, especially for unconventional reservoir such as shale gas reservoir. According to experimental results and field data, shale permeability will change with the variation of reservoir pressure and formation stress, especially when rock occurs failure due to pressure and stress perturbation during hydraulic fracturing, its permeability will change drastically. So far, however, measuring shale rock permeability by triaxial stress experiment is expensive and difficult. Particularly, there is no comprehensive theoretical method to estimate permeability change after rock occurs failure. This paper aims to use numerical method to investigate the dependence of shale rock permeability on triaxial stress and pore pressure, and analyzes the impact of rock failure, resulted from stress and pressure change, on the permeability. Firstly, this paper built a digital shale rock cylinder by combining discrete element method (DEM), fluid-solid coupling model, and servomechanical algorithm. Secondly, all the crucial micro parameters (particle number, size, stiffness, bond strength, etc.) of the digital rock were delicately calibrated according to the experimental data of real rock sample collected from Bakken shale reservoir, making the macro-mechanical property and seepage characteristic of digital rock consistent with real rock sample. Thirdly, based on the calibrated micro-parameters of digital rock cylinder, we re-constructed a digital rock cube, which could be used for numerical permeability test under true triaxial condition to simulate the permeability change under different pressure and stress (xyz-axis) states. Finally, some natural fractures (weak bonding plane) were preset in digital rock cube, and the shale rock permeability was estimated after fracture failure occurs due to pressure and stress change. The research results show that intact shale cube permeability will decrease with triaxial stress increasing or pore pressure decreasing. Besides, the permeability of shale rock cube will be affected by the natural fractures’ property and failure states. In general, as the triaxial stress increases, the natural fractures in shale rock cube will occur failure gradually, meanwhile, its permeability will rise remarkably in the beginning. However, after most of the natural fractures have occurred failure under high-stress or high-pressure states, shale permeability will turn to decrease as the stress continues to increase. This paper proposed a numerical method of shale rock permeability test to explore the inner mechanism and exterior behavior of shale permeability dependence on triaxial stress, pore pressure, and rock failure states, providing theoretical guidance and field application potential for fracturing design and efficient development of shale reservoir.

Key words: Shale, Permeability sensitivity, Discrete element method, Triaxial stress, Natural fractures, Hydraulic fracturing

CLC Number: 

  • TE357

Fig.1

The linear contact and linear parallel bond components model"

Fig.2

A connection between two contacted particle balls"

Fig.3

A flow pipe consisted of three connections"

Fig.4

A pressure domain consisted of four flow pipes"

Table 1

The tested parameters of cylinder shale core sample from Bakken Formation[57]"

参数数值备注
岩心高度/m0.050 8
岩心直径/m0.025 4
孔隙度/%4.916
杨氏模量/GPa75.85
泊松比/无量纲0.217
抗压强度/MPa122.15CP: 0 MPa
150.24CP: 10 MPa
176.48CP: 20 MPa
内聚力/MPa35.104
摩擦系数/(°)32.9

渗透率

/(10-6 μm2

0.63孔隙压力: 0 MPa 周向围压: 0 MPa
0.122孔隙压力: 3.5 MPa 周向围压: 20 MPa
0.175孔隙压力: 5.5 MPa 周向围压: 20 MPa
0.199孔隙压力: 7.5 MPa 周向围压: 20 MPa
0.136孔隙压力: 7.5 MPa 周向围压: 30 MPa
0.133孔隙压力: 7.5 MPa 周向围压: 40 MPa

Fig.5

Discrete element model of digital core cylinder of shale sample"

Table 2

Primary parameters of the calibrated digital core cylinder"

参数数值
岩心高度/m0.050 8
岩心直径/m0.025 4
岩石胶结系数/无量纲0.7
离散单元个数/无量纲3 790
接触单元个数/无量纲19 290
离散单元直径/m0.001
离散单元法向刚度/(N/m)2.70×1011
离散单元切向刚度/(N/m)8.00×1010
离散单元摩擦系数/无量纲0
平行连接单元法向刚度/(N/m)2.70×1013
平行连接单元切向刚度/(N/m)8.00×1012
平行连接单元抗张强度/Pa1.00×107
平行连接单元内聚力/Pa3.30×107
平行连接单元摩擦角/(°)30

Fig.6

The axial stress-strain curve of quasi-triaxial compression test simulation of digital core cylinder"

Fig.7

The axial-circumferential strain curve of quasi-triaxial compression test simulation of digital core cylinder (confining pressure: 0 MPa)"

Fig.8

The pore pressure distribution in the digital core cylinder during permeability test (confining pressure: 20 MPa; pore pressure: 7.5 MPa)"

Table 3

The comparison between laboratory test and simulation test results of shale rock core from Bakken Formation"

参数测量/模拟数值备注
真实岩心数值岩心相对误差/%
孔隙度/%4.9164.9120.08
杨氏模量/GPa75.8575.280.75
泊松比0.2170.2150.92
抗压强度/MPa122.15119.342.30周向围压: 0 MPa
150.24151.320.72周向围压: 10 MPa
176.48175.730.42周向围压: 20 MPa
渗透率/(10-6 μm20.630.6083.49孔隙压力: 0 MPa 周向围压: 0 MPa
0.1220.1192.46孔隙压力: 3.5 MPa 周向围压: 20 MPa
0.1750.1721.71孔隙压力: 5.5 MPa 周向围压: 20 MPa
0.1990.2042.51孔隙压力: 7.5 MPa 周向围压: 20 MPa
0.1360.1392.21孔隙压力: 7.5 MPa 周向围压: 30 MPa
0.1330.1283.76孔隙压力: 7.5 MPa 周向围压: 40 MPa

Fig.9

Discrete element model of digital core cube of shale sample"

Table 4

Primary parameters of the calibrated digital core cube"

参数数值
岩心边长/m0.025 4
岩石胶结系数/无量纲0.7
离散单元个数2 230
接触单元个数10 578
离散单元直径/m0.001
离散单元法向刚度/(N/m)2.70×1011
离散单元切向刚度/(N/m)8.00×1010
离散单元摩擦系数/无量纲0
平行连接单元法向刚度/(N/m)2.70×1013
平行连接单元切向刚度/(N/m)8.00×1012
平行连接单元抗张强度/Pa1.00×107
平行连接单元内聚力/Pa3.30×107
平行连接单元摩擦角/(°)30

Fig.10

The pore pressure distribution in the digital core cube during permeability test (confining pressure:σx =σy =σz =20 MPa; pore pressure: 7.5 MPa)"

Fig.11

The influence of x-y-z triaxial stress changes on permeability of digital shale cube (no natural ftracture)under different pore pressures"

Fig.12

The influence of x axial stress changes on permeability of digital shale cube (no natural fracture) under different pore pressures"

Fig.13

A digital shale core cube with a disk-shaped natural fracture(green)"

Table 5

The geometric and mechanical parameters of the disk-shaped natural fracture in digital core"

参数数值
天然裂缝直径/cm2.54
天然裂缝倾角/(°)90
天然裂缝逼近角/(°)30
天然裂缝抗张强度/MPa1.03
天然裂缝内聚力/MPa5.97
天然裂缝摩擦系数/无量纲0.20

Fig.14

The spatial distribution of bond failures in digital core under different x axial stresses"

Fig.15

The quantity of bond failures and core permeability under different x axial stresses"

Fig.16

Digital shale core cubes with disk-shaped natural fractures(green) of different quantities"

Table 6

The geometric and mechanical parameters of disk-shaped natural fractures in digital cores with different quantity"

参数数值
天然裂缝平均直径/cm0.254
天然裂缝数量/条50, 100, 200
天然裂缝平均倾角/(°)90
天然裂缝平均逼近角/(°)30
天然裂缝抗张强度/MPa1
天然裂缝内聚力/MPa6
天然裂缝摩擦系数/无量纲0.2

Fig.17

Spatial distribution of bond failures(red) in shale cubes with different natural fractures (NF) dip angle under different x-axis stress"

Fig.18

The influence of natural fracture quantity and x-axis stress on bond failures and permeability of shale cube"

Fig.19

Digital shale core cubes with disk-shaped natural fractures(green) of different dip angles"

Fig.20

Spatial distribution of bond failures(red) in shale cubes with different natural fractures (NF) quantity under different x-axis stress"

Fig.21

The influence of natural fracture dip angle and x-axis stress on bond failures and permeability of shale cube"

1 李志强. 页岩气藏体积改造多尺度流动生产模拟研究[D]. 成都: 西南石油大学,2017:1-2.
LI Z Q. Research on Production Simulation Based on Multiscale Flow in Shale Gas Reservoir with Stimulated Reservoir Volume[D].Chengdu:Southwest Petroleum University,2017: 1-2.
2 LUFFEL D L, HOPKINS C W, SCHETTLER P D. Matrix permeability measurement of gas productive shales[C]. SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas, 1993.
3 SAKHAEE-POUR A, BRYANT S. Gas permeability of shale[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(4): 401-409.
4 ADAMS B H. Stress-sensitive permeability in a high-permeability sandstone reservoir-the kuparuk field[C]. SPE California Regional Meeting. Ventura, California,1983.
5 WANG F P, REED R M. Pore networks and fluid flow in gas shales[C]. SPE Annual Technical Conference and Exhibition, 4-7 October. New Orleans, Louisiana,2009.
6 LIN R, REN L, ZHAO J, et al. Cluster spacing optimization of multi-stage fracturing in horizontal shale gas wells based on stimulated reservoir volume evaluation[J]. Arabian Journal of Geosciences, 2017, 10(2): 38.
7 REN L, LIN R, ZHAO J. Stimulated reservoir volume estimation and analysis of hydraulic fracturing in shale gas reservoir[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6429-6444.
8 REN L, LIN R, ZHAO J, et al. Stimulated reservoir volume estimation for shale gas fracturing: Mechanism and modeling approach[J].Journal of Petroleum Science and Engineering, 2018, 166: 290-304.
9 CHIN L Y, RAGHAVAN R, THOMAS L K. Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability[C]. SPE International Oil and Gas Con-ference and Exhibition,2-6 November,Beijing, China,1998.
10 DAVIES J P, DAVIES D K. Stress-dependent permeability: Characterization and modeling[J]. SPE Journal,2001,6(2): 224-235.
11 OFAGBOHUNMI S,CHALATURNYK R J,LEUNG J Y W. Coupling of stress-dependent relative permeability and reservoir simulation[C]. SPE Improved Oil Recovery Symposium, 14-18 April. Tulsa, Oklahoma, USA,2012.
12 代宇, 贾爱林, 尚福华. 考虑岩石变形效应的页岩气渗流模型[J]. 科学技术与工程, 2016, 16(11): 44-48.
DAI Y, JIA A L, SHANG F H. Seepage character research for shale gas reservoirs with consideration of rock deformation[J].Science Technology and Engineering,2016,16(11):44-48.
13 NELSON R A. Fracture Permeability in Porous Reservoirs: An Experimental and Field Approach[D]. College Station: Texas A & M University, 1975: 35-47.
14 GANGI A F. Variation of whole and fractured porous rock permeability with confining pressure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(5): 249-257.
15 BERNABE Y. The effective pressure law for permeability in chelmsford granite and barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 267-275.
16 WORTHINGTON P F. The stress response of permeability[C]. SPE Annual Technical Conference and Exhibition, 26-29 September. Houston, Texas, 2004.
17 CHEN D, PAN Z, YE Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights[J]. Fuel, 2015, 139: 383-392.
18 XIAO W, LI T, LI M, et al. Evaluation of the stress sensitivity in tight reservoirs[J]. Petroleum Exploration and Development, 2016, 43(1): 115-123.
19 CIVAN F. Compressibility, porosity, and permeability of shales involving stress shock and loading/unloading hysteresis[C].Unconventional Resources Technology Conference. Houston, Texas,2018.
20 ZOBACK M D, BYERLEE J. Permeability and effective stress: Geologic notes[J]. AAPG Bulletin,1975,59(1): 154-158.
21 JONES F O.A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. Journal of Petroleum Technology,1975,27(1): 21-27.
22 SEEBURGER D A, NUR A. A pore space model for rock permeability and bulk modulus[J]. Journal of Geophysical Research (Solid Earth), 1984, 89(B1): 527-536.
23 LEI G, DONG P, WU Z, et al. A fractal model for the stress-dependent permeability and relative permeability in tight sandstones[J]. Journal of Canadian Petroleum Technology, 2015, 54(1): 36-48.
24 GEILIKMAN M B, WONG S W, KARANIKAS J M. Stress-dependent permeability model of laminated gas shale[C]. 49th U.S. Rock Mechanics/Geomechanics Symposium, 28 June-1 July, San Francisco, California, 2015.
25 CAO C, LI T, ZHAO Y, et al. Multi-field coupling permeability model in shale gas reservoir[C]. SPE Middle East Oil & Gas Show and Conference, 6-9 March. Manama, Kingdom of Bahrain,2017.
26 WHEATON R. Dependence of shale permeability on pressure[J]. SPE Reservoir Evaluation & Engineering,2017,20(1): 228-232.
27 CUI G, XIA-TING F, PAN Z, et al. Impact of shale matrix mechanical interactions on gas transport during production[J]. Journal of Petroleum Science and Engineering,2020,184: 106524.
28 CHENEVERT M E, SHARMA A K. Permeability and effective pore pressure of shales[J]. SPE Drilling & Completion, 1993, 8(1): 28-34.
29 KATSUKI D, GUTIERREZ M, TUTUNCU A N. Laboratory determination of the continuous stress-dependent permeability of unconventional oil reservoir rocks[C]. Unconventional Resources Technology Conference,12-14 August. Denver, Colorado, USA,2013.
30 SINHA S, BRAUN E M, DETERMAN M D, et al. Steady-state permeability measurements on intact shale samples at reservoir conditions-effect of stress, temperature, pressure, and type of gas[C]. SPE Middle East Oil and Gas Show and Conference, 10-13 March. Manama, Bahrain, 2013.
31 HELLER R, VERMYLEN J, ZOBACK M J A B. Experimental investigation of matrix permeability of gas shales[J]. AAPG Bulletin, 2014, 98(5): 975-995.
32 MOGHADAM A A, CHALATURNYK R. Laboratory investigation of shale permeability[C]. SPE/CSUR Unconventional Resources Conference, 20-22 October. Calgary, Alberta, Canada, 2015.
33 ZHANG R, NING Z, YANG F, et al. Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1663-1672.
34 朱维耀, 田巍, 高英, 等. 页岩气渗流规律测试条件研究[J]. 天然气地球科学, 2015, 26(6): 1106-1112.
ZHU W Y, TIAN W, GAO Y, et al. Study on experiment conditions of seepage law of marine shale gas[J]. Natural Gas Geoscience, 2015, 26(6): 1106-1112.
35 张道川. 多场耦合作用下页岩渗流特性研究[D]. 重庆: 重庆大学, 2016: 36-50.
ZHANG D C. The Study of Seepage Characteristics in Shale Under Multi-field Coupling Conditions[D].Chongqing: Chong-qing University, 2016: 36-50.
36 张睿. 页岩储层有效应力及应力敏感机理研究[D]. 北京: 中国石油大学(北京), 2016: 94-104.
ZHANG R. Effective Stress Law and Stress Dependent Mechanism for the Permeability of Shale[D]. Beijing: China University of Petroleum (Beijing), 2016: 94-104.
37 董文强. 温度与有效应力对页岩储层应力敏感影响研究[J]. 石油化工应用,2018,37(3):62-66,72.
DONG W Q. Effects of temperature and effective stress on stress sensitivity of shale reservoirs[J]. Petrochemical Industry Application, 2018,37(3):62-66,72.
38 张道川, 周军平, 鲜学福, 等. 多场耦合作用下页岩渗透特性实验研究[J]. 地下空间与工程学报, 2018, 14(3): 613-621.
ZHANG D C, ZHOU J P, XIAN X F, et al. Experiment study on the coupling multi-field effect on the dynamic variation of permeability in shale[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(3): 613-621.
39 赵瑜, 王超林, 曹汉, 等. 页岩渗流模型及孔压与温度影响机理研究[J]. 煤炭学报, 2018, 43(6): 1754-1760.
ZHAO Y, WANG C L, CAO H, et al. Influencing mechanism and modelling study of pore pressure and temperature on shale permeability[J]. Journal of China Coal Society, 2018, 43(6): 1754-1760.
40 LIU H, ZHANG J. An efficient laboratory method to measure the combined effects of knudsen diffusion and mechanical deformation on shale permeability[J]. Journal of Contaminant Hydrology, 2020, 232: 103652.
41 BHANDARI A R, FLEMINGS P B, POLITO P J, et al. Anisotropy and stress dependence of permeability in the barnett shale[J]. Transport in Porous Media, 2015, 108(2): 393-411.
42 KATSUKI D, DEBEN A P, ADEKUNLE O, et al. Stress-dependent permeability and dynamic elastic moduli of reservoir and seal shale[C]. Unconventional Resources Technology Conference, 1-3 August. San Antonio, Texas, 2016.
43 CHEN T, FENG X T, CUI G, et al. Experimental study of permeability change of organic-rich gas shales under high effective stress[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 1-14.
44 GUTIERREZ M, ØINO L E, NYGåRD R. Stress-dependent permeability of a de-mineralised fracture in shale[J]. Marine and Petroleum Geology, 2000, 17(8): 895-907.
45 CHO Y, OZKAN E, APAYDIN O G. Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(2): 216-228.
46 MOKHTARI M, ALQAHTANI A A, TUTUNCU A N, et al. Stress-dependent permeability anisotropy and wettability of shale resources[C]. Unconventional Resources Technology Conference, Denver, Colorado, USA. 12-14 August, 2013.
47 CAREY J W, LEI Z, ROUGIER E, et al. Fracture-permeability behavior of shale[J]. Journal of Unconventional Oil and Gas Resources, 2015, 11: 27-43.
48 黎国志. 页岩在CO2作用下的渗流—应力耦合实验研究[D]. 成都: 西南石油大学, 2016: 62-87.
LI G Z. Experimental Study on Seepage-Stress Coupling of Rock Under CO2[D]. Chengdu: Southwest Petroleum University, 2016: 62-87.
49 孙文吉斌, 左宇军, 邬忠虎, 等. 页岩渗流-损伤演化特征试验研究[J]. 中国矿业, 2017, 26(3): 142-145.
SUN W J B, ZUO Y J, WU Z H, et al. Experimental study on seepage-damage evolution of shale[J]. China Mining Magazine, 2017, 26(3): 142-145.
50 左宇军, 孙文吉斌, 邬忠虎, 等. 渗透压—应力耦合作用下页岩渗透性试验[J]. 岩土力学, 2018, 39(9): 3253-3260.
ZUO Y J, SUN W J B, WU Z H, et al. Experiment on permeability of shale under osmotic pressure and stress coupling[J]. Rock and Soil Mechanics, 2018, 39(9): 3253-3260.
51 LIU X, LI M, XU M, et al. Permeability of the hydrated shale under cyclic loading and unloading conditions[J]. Geofluids, 2020: 8863249.
52 TAKAHASHI M, KOIDE H, SUGITA Y. Three principal stress effects on permeability of shirahama sandstone[C]. 8th ISRM Congress, Tokyo, Japan. 25-29 September, 1995.
53 李铭辉. 真三轴应力条件下储层岩石的多物理场耦合响应特性研究[D]. 重庆: 重庆大学, 2016: 54-63.
LI M H. Research on multi-physics coupling behaviors of reservoir rocks under true triaxial stress conditions[D]. Chongqing: Chongqing University, 2016: 54-63.
54 LI M, CAO J, LI W. Stress and damage induced gas flow pattern and permeability variation of coal from Songzao coalfield in southwest china[J]. Energies, 2016, 9(5): 351.
55 LI M, YIN G, XU J, et al. Permeability evolution of shale under anisotropic true triaxial stress conditions[J]. International Journal of Coal Geology, 2016, 165: 142-148.
56 LI M,YIN G,XU J,et al.A novel true triaxial apparatus to stu-dy the geomechanical and fluid flow aspects of energy exploitations in geological formations[J]. Rock Mechanics and Rock Engineering, 2016,49(12):4647-4659.
57 HE J. Study about Petrophysical and Geomechanical Properties of Bakken Formation[D]. Grand Forks:University of North Dakota, 2015: 59-110.
58 WARPINSKI N R. Hydraulic fracturing in tight,fissured media[J]. Journal of Petroleum Technology,1991,43(2):146-209.
[1] Huaicai FAN, Jian ZHANG, Shengjie YUE, Haoran HU. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization [J]. Natural Gas Geoscience, 2022, 33(4): 512-519.
[2] Xiaoming LI, Yarong WANG, Wen LIN, Lihong MA, Dexun LIU, Jirong LIU, Yu ZHANG. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province [J]. Natural Gas Geoscience, 2022, 33(4): 629-641.
[3] Jianfa WU, Shengxian ZHAO, Yingkun ZHANG, Ziqiang XIA, Bo LI, Shusheng YUAN, Jian ZHANG, Chenglin ZHANG, Yuanhan HE, Shangbin CHEN. Material composition and pore contribution of deep shale gas reservoir and its significance for exploration and development [J]. Natural Gas Geoscience, 2022, 33(4): 642-653.
[4] Xiaoyan ZOU, Xianqing LI, Yuan WANG, Jizhen ZHANG, Pei ZHAO. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
[5] Guoxin SHAN, Peng CHENG, Xianming XIAO, Jian SUN, Ping GAO. Water-bearing characteristics in overmature shales from coal measure strata based on equilibrium water vapor adsorption and its geological significances [J]. Natural Gas Geoscience, 2022, 33(4): 666-676.
[6] Qin ZHANG,Zhen QIU,Leifu ZHANG,Yuman WANG,Yufeng XIAO,Dan LIU,Wen LIU,Shuxin LI,Xingtao LI. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 396-407.
[7] Yueli LIANG,Jiawang GE,Xiaoming ZHAO,Xi ZHANG,Shuxin LI,Zhihong NIE. High-resolution sequence division and geological significance of exploration of marine-continental transitional facies shale in the 2nd Member of Shanxi Formation, eastern margin of Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 408-417.
[8] Yicheng WANG,Leifu ZHANG,Zhen QIU,Sizhong PENG,Congjun FENG,Mengsi SUN. Lithofacies types and reservoir characteristics of transitional shales of the Permian Shan23 sub-member, eastern Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 418-430.
[9] Pengwei WANG,Guangxiang LIU,Zhongbao LIU,Xiao CHEN,Peng LI,Beibei CAI. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(3): 431-440.
[10] Yuanzhen MA,Meng WANG,Jiamin LI,Jianguang ZHAO,Tengfei JIA,Junqing ZHU. Characteristics and gas-bearing characteristics of coal-measure shale reservoirs in the Upper Paleozoic of Qinshui Basin [J]. Natural Gas Geoscience, 2022, 33(3): 441-450.
[11] Weidong XIE,Meng WANG,Hua WANG,Hongyue DUAN. Multi-scale fractal characteristics of pores in transitional shale gas reservoir [J]. Natural Gas Geoscience, 2022, 33(3): 451-460.
[12] Xuping MA, Qingli ZENG. Influence of multi-perforation fracturing on the regularity of hydraulic fractures propagation [J]. Natural Gas Geoscience, 2022, 33(2): 312-323.
[13] Jian WANG, Lu ZHOU, Jin LIU, Jun CHEN, Menglin ZHENG, Huan JIANG, Baozhen ZHANG. Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin [J]. Natural Gas Geoscience, 2022, 33(1): 116-124.
[14] Yanxu HU, Chunyuan HAN, Jilun KANG, Bin LI, Jianping WU, Tao JIANG, Jie FAN, Dashuai YE. New genesis model of the shale oil sweet-spot reservoir: Case study of Lucaogou Formation in Jimsar Sag, Junggar Basin [J]. Natural Gas Geoscience, 2022, 33(1): 125-137.
[15] Ronghui FANG, Xiaoqiang LIU, Cong ZHANG, Meijun LI, Xianghua XIA, Zhilong HUANG, Chengyu YANG, Qiuya HAN, Hanqin TANG. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province [J]. Natural Gas Geoscience, 2022, 33(1): 138-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[7] . [J]. Natural Gas Geoscience, 0, (): 9 .
[8] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[9] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[10] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .