Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (4): 629-641.doi: 10.11764/j.issn.1672-1926.2021.11.011

Previous Articles     Next Articles

Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province

Xiaoming LI1(),Yarong WANG1,Wen LIN2,Lihong MA1(),Dexun LIU2,Jirong LIU1,Yu ZHANG1   

  1. 1.College of Safety Engineering,North China Institute of Science and Technology,Beijing 101601,China
    2.Department of Shale Gas,Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • Received:2021-10-13 Revised:2021-11-18 Online:2022-04-10 Published:2022-04-22
  • Contact: Lihong MA E-mail:lixm@ncist.edu.cn;Malh@ncist.edu.cn
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05035);the Key Project of PetroChina Co., Ltd(2017B49);the Fundamental Research Funds for the Central Universities(3142014025)

Abstract:

In order to explore the pore structure and fractal characteristics of shale reservoirs in the Jingmen exploration area and quantitatively evaluate the heterogeneity and complexity of pores, taking Wufeng-Longmaxi formations of Well YT3 as the research object, the pore structure characteristics of shale reservoir are analyzed by low-pressure nitrogen adsorption experiments, organic carbon content testing, X-ray diffraction analysis, etc. and the FHH fractal model is established based on the low temperature nitrogen adsorption fractal geometry method. The relationship between fractal dimension and shale composition, pore structure, physical property, gas-bearing property and burial depth is discussed. The results show that: (1) The organic carbon (TOC) content of the lower Longmaxi Formation and Wufeng Formation is significantly higher than that of the upper Longmaxi Formation. With the increase of burial depth, the silicate minerals increase gradually, while clay minerals decrease; (2)The on-site desorption gas content of shale shows that the gas content of the upper section of Longmaxi Formation with low organic matter abundance is lower than that of the lower section of Longmaxi Formation and Wufeng Formation. In terms of shale gas composition, the upper section of Longmaxi Formation is dominated by nitrogen, while the lower sections of Wufeng Formation and Longmaxi Formation are dominated by methane; (3)The isothermal curve of shale under low-pressure nitrogen is close to type IV classified by IUPAC, and the adsorption hysteresis loop is similar to types H3 and H4. It is flat and slit pores, and the pores are mainly micro medium pores distributed below 50 nm. The adsorption volume of the lower Longmaxi Formation and Wufeng Formation is significantly larger than that of the upper Longmaxi Formation, and the high abundance of organic matter provides a large amount of organic pore storage space; (4)The BET specific surface area and BJH total pore volume in the lower Longmaxi Formation and Wufeng Formation with high organic matter are significantly larger than those of upper Longmaxi Formation with low organic matter, while the average pore size is significantly smaller; (5) Shale pores have obvious fractal characteristics, and the fractal dimension D2 is greater than D1, indicating that the complexity of pore structure is greater than that of pore surface. Fractal dimension has a significant positive correlation with total organic carbon(TOC) content, BET specific surface area and burial depth, a weak positive correlation with quartz content and BJH total pore volume, a significant negative correlation with clay mineral content and average pore diameter, but almost no correlation with porosity and permeability. There are many factors that affect the fractal dimension. Correlation analysis reveals that the mass fraction of organic carbon and clay mineral, specific surface area, average pore diameter and burial depth are the main controlling factors. The fractal dimension can be used to quantitatively evaluate the complexity and heterogeneity of pore structure, which provides an idea for studying the distribution characteristics of shale pore structure and reservoir evaluation.

Key words: Jingmen exploration area, Shale reservoir, Pore structure, Nitrogen adsorption method, Fractal characteristics

CLC Number: 

  • TE122

Fig.1

Lithology comprehensive profile of Wufeng Formation-1th Member of Longmaxi Formation of Well YT3 in the Jingmen exploration area"

Table 1

Basic data of the shale sample"

样品深度/m层位有机地球化学参数孔隙结构参数矿物含量/%
等效镜质体反射率(RO)/%

TOC

/%

BET比表面积

/(m2/g)

BJH总孔体积

/(mL/g)

平均孔直径

/nm

石英长石方解石白云石黄铁矿黏土矿物
YT3-013 470.51龙一22.110.096.760.022 414.7744.210.545.3
YT3-053 480.88龙一22.680.267.450.022 713.6440.49.82.747.1
YT3-093 500.40龙一22.190.278.050.021 213.0639.29.81.949.1
YT3-133 511.35龙一22.661.0010.490.022 112.5539.59.54.346.7
YT3-163 517.92龙一22.270.637.720.021 814.0240.29.72.547.6
YT3-193 527.08龙一22.400.969.560.022 312.4639.59.15.745.7
YT3-223 536.63龙一142.170.168.090.022 213.4338.08.71.252.1
YT3-233 537.62龙一140.629.740.024 113.3839.49.73.347.6
YT3-253 550.58龙一132.342.2619.300.026 99.4839.27.78.045.1
YT3-263 552.34龙一133.8621.410.026 29.3443.611.60.83.510.030.5
YT3-273 555.34龙一133.7219.690.026 19.1946.014.13.34.731.9
YT3-283 557.31龙一133.6420.410.023 88.3357.18.13.22.86.522.3
YT3-293 560.00龙一122.183.1218.850.022 08.4345.44.427.73.1415.4
YT3-303 562.21龙一123.7724.640.029 78.19445.11.416.9428.6
YT3-313 566.77龙一112.6815.110.023 78.9858.85.93.52.229.6
YT3-323 567.73五峰组2.202.5018.440.026 28.7458.66.135.3

Fig.2

Variation of mineral content with depth"

Fig.3

Shale lithofacies division diagram"

Table 2

Characteristics of porosity and permeability and gas content"

样品编号深度/m层位孔隙度/%渗透率/(10-3 μm2含气量/(m3/t)页岩气组成物质的量分数/%
N2CO2CH4C2H6
YT3-013 470.51龙一20.5753.8080.7194.585.42
YT3-053 480.88龙一21.5302.8681.42
YT3-093 500.40龙一20.6863.0391.33
YT3-133 511.35龙一20.2652.6251.53
YT3-163 517.92龙一21.2591.009.00
YT3-193 527.08龙一23.8553.5042.20
YT3-223 536.63龙一141.4995.284.220.50
YT3-233 537.62龙一141.5082.451.0816.47
YT3-253 550.58龙一131.3073.0153.4577.891.1021.01
YT3-263 552.34龙一133.942.950.2096.650.20
YT3-273 555.34龙一134.173.560.5595.580.31
YT3-283 557.31龙一131.50
YT3-293 560.00龙一121.4023.3454.04
YT3-303 562.21龙一125.81
YT3-313 566.77龙一111.59
YT3-323 567.73五峰组3.6233.5905.303.690.7395.490.09

Fig.4

Nitrogen adsorption-desroption isotherms of shale samples"

Fig.5

Pore diameter distribution of shale samples"

Fig.6

The pore structure parameters of shale reservoer"

Fig.7

Plots of LnV and Ln[Ln(p0/p)]reconstructed from the N2 gas adsorption isotherms"

Table 3

Fractal dimension based on FHH model"

样品编号P/P0<0.45P/P0>0.45
分形拟合方程R2D1分形拟合方程R2D2
YT3-01y =-0.387 3x + 0.849 30.999 02.612 7y =-0.397 2x + 0.836 20.991 22.602 8
YT3-05y =-0.395 4x + 0.944 60.999 32.604 6y =-0.377 8x + 0.942 50.998 02.622 2
YT3-09y =-0.369 4x + 1.0170.999 42.630 6y =-0.332 1x + 1.023 70.991 42.667 9
YT3-13y =-0.319 3x + 1.269 80.997 52.680 7y =-0.315 1x + 1.235 50.997 62.684 9
YT3-16y =-0.373 9x + 0.974 80.998 82.626 1y =-0.353 1x + 0.959 30.996 52.646 9
YT3-19y =-0.361 2x + 1.183 40.997 52.638 8y =-0.334x + 1.150.998 22.666 0
YT3-22y =-0.369x + 1.019 80.999 62.631 0y =-0.342 5x + 1.0260.990 12.657 5
YT3-23y =-0.343x + 1.200 90.998 72.657 0y =-0.348 2x + 1.163 40.997 92.651 8
YT3-25y =-0.308 9x + 1.869 30.991 92.691 1y =-0.253 9x + 1.839 50.995 72.746 1
YT3-26y =-0.285x + 1.967 40.986 72.715y =-0.217 5x + 1.947 10.998 72.782 5
YT3-27y =-0.305 3x + 1.887 10.992 02.694 7y =-0.231 3x + 1.876 10.999 22.768 7
YT3-28y =-0.305 6x + 1.9220.987 02.694 4y =-0.193 7x + 1.945 30.991 72.806 3
YT3-29y =-0.303 4x + 1.842 20.988 02.696 6y =-0.195x + 1.858 90.991 82.805 0
YT3-30y =-0.320 6x + 2.113 10.989 42.679 4y =-0.202 6x + 2.128 30.999 62.797 4
YT3-31y =-0.368 7x + 1.633 40.991 42.631 3y =-0.238x + 1.671 90.994 42.762 0
YT3-32y =-0.339 5x + 1.828 70.992 12.660 5y =-0.232 7x +1 .856 30.998 42.767 3

Fig.8

Fractal dimension distribution based on liquid nitrogen adsorption"

Fig.9

Relationships between fractal dimension and TOC, clay mineral contents, quartz, specific surface area, total pore volume, average diameter, porosity and permeability"

Fig.10

Relationship between fractal dimension and porosity, permeability gas content and depth"

Fig.11

SEM image of shale core samples in the Jingmen area"

1 贾爱林,位云生,金亦秋.中国海相页岩气开发评价关键技术进展[J].石油勘探与开发,2016,43 (6):1-7.
JIA A L,WEI Y S, JIN Y Q. Progress in key technologies for evaluating marine shale gas development in China[J].Petroleum Exploration and Development, 2016, 43 (6):1-7.
2 李小明,柳吉荣,吝文,等.荆门探区五峰组—龙马溪组页岩储层特征及甜点层段评价[J].煤田地质与勘探,2021,49(6):1-11.
LI X M, LIU J R, LIN W, et al.Characteristic of the shale gas reservoirs and evaluation of sweet spot in Wufeng-Longmaxi formation in Jingmen exploration area: A case from the X well[J].Coal Geology & Exploration,2021,49(6):1-11.
3 刘树根,叶玥豪,冉波,等.差异保存条件下页岩孔隙结构特征演化及其意义[J].油气藏评价与开发,2020,10(5):1-11.
LIU S G,YE Y H,RAN B,et al.Evolution and implications of shale pore structure characteristics under different preservation conditions[J]. Reservoir Evaluation and Development,2020,10(5): 1-11.
4 刘伟新,卢龙飞,魏志红,等.川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J].石油实验地质,2020,42(3):379-385.
LIU W X, LU L F, WEI Z H, et al.Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J].Petroleum Geology & Experiment, 2020,42(3):379-385.
5 刘伟新,俞凌杰,张文涛,等.川东南龙马溪组页岩微观孔隙结构特征[J].海洋地质与第四纪地质,2016,36(3): 127-134.
LIU W X, YU L J, ZHANG W T, et a1.Micro-pore structure of Longmaxi shale from southeast Sichuan Basin[J].Marine Geology & Quaternary Geology,2016,36(3):127-134.
6 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
ZOU C N, ZHU R K, BAI B, et al.First discovery of na-no-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
7 王红岩,周尚文,刘德勋,等.页岩气地质评价关键实验技术的进展与展望[J].天然气工业, 2020, 40(6):1-17.
WANG H Y, ZHOU S W, LIU D X, et al.Progress and prospect of key experimental technologies for shale gas geological evaluation[J].Natural Gas Industry,2020,40(6):1-17.
8 高之业,范毓鹏,胡钦红,等.川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J].石油科学通报,2020,5(1):1-16.
GAO Z Y, FAN Y P, HU Q H, et al.Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the South Sichuan Basin[J].Petroleum Science Bulletin, 2020, 5(1): 1-16.
9 白名岗,夏响华,张聪,等.场发射扫描电镜及Per Geos 系统在安页1 井龙马溪组页岩有机质孔隙研究中的联合应用[J].岩矿测试,2018,37(3):225-234.
BAI M G, XIA X H, ZHANG C, et al.Study on shale organic porosity in the Longmaxi Formation, Anye-1 Well using field emission-scanning electron microscopy and Per Geos system[J].Rock and Mineral Analysis, 2018, 37(3): 225-234.
10 庞铭,陈华兴,唐洪明,等.海相页岩与陆相页岩微观孔隙结构差异——以川南龙马溪组、鄂尔多斯延长组为例[J].天然气勘探与开发 , 2018, 42(2): 29-36.
PANG M, CHEN H X, TANG H M, et al.Differences of micropore structure between marine shale and continental shale: Examples from Longmaxi Formation in southern Sichuan Basin and Yanchang Formation in Ordos Basin[J].Natural Gas Exploration and Development, 2018, 42(2): 29-36.
11 宋董军,妥进才,王晔桐,等.富有机质泥页岩纳米级孔隙结构特征研究进展[J].沉积学报, 2019, 37(6): 1309-1324.
SONG D J, TUO J C, WANG Y T, et al.Research advances on characteristics of nanopore structure of organic-rich shales[J].Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324.
12 窦锦爱,林业青,邵丰,等.页岩气储层孔隙结构表征技术及实验方法研究进展[J].西安科技大学学报,2020,40(6): 1019-1030.
DOU J A, LIN Y Q, SHAO F, et al.Advances in characterization techniques and experimental methods of shale gas reservoir pore structure[J].Journal of Xi’an University of Science and Technology,2020,40(6): 1019-1030.
13 李俊乾,卢双舫,张鹏飞,等.页岩基质孔隙水定量表征及微观赋存机制[J].石油学报,2020,41(8):979-990.
LI J Q, LU S F, ZHANG P F, et al.Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix[J].Acta Petrolei Sinica, 2020, 41(8):979-990.
14 赵迪斐.川东下古生界五峰组—龙马溪组页岩储层孔隙结构精细表征[D].徐州: 中国矿业大学,2020:96-163.
ZHAO D F.Quantitative Characterization of Pore Structure of Shale Reservoirs in the Lower Paleozoic Wufeng-Longmaxi Formation of the East Sichuan Area[D].Xuzhou: China University of Mining and Technology, 2020:96-163.
15 张琴,梁峰,梁萍萍,等.页岩分形特征及主控因素研究:以威远页岩气田龙马溪组页岩为例[J].中国矿业大学学报,2020,49(1):110-122.
ZHANG Q, LIANG F, LIANG P P, et al.Investigation of fractal characteristics and its main controlling factors of shale reservoir:A case study of the Longmaxi shale in Weiyuan shale gas field[J].Journal of China University of Mining & Technology, 2020,49(1):110-122.
16 杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.
YANG F, NING Z F, WANG Q, et al.Fractal characteristics of nanoporc in shalcs[J].Natural Gas Geoscience,2014,25(4):618-623.
17 MANDELBROT B B.Fractals:From,Chance,and Dimension[M].New York:Freeman W H and Co.,1977:1-10.
18 孙雷,高玉琼,潘毅,等.页岩纳米孔隙表面分形特征及其影响因素[J].西南石油大学学报(自然科学版),2017,39(6):85-91.
SUN L, GAO Y Q, PAN Y, et al.Surface fractal characteristics and their influence on shale nanopores[J].Journal of Sou-thwest Petroleum University(Science & Technology Edition),2017,39(6):85-91.
19 肖磊,李卓,杨有东,等.渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J].科学技术与工程,2021,21(2):512-521.
XIAO L, LI Z, YANG Y D, et al.Pore structure and fractal characteristics of different lithofacies shales of the Lower Silurian Longmaxi Formation in southeast Chongqing[J].Science Technology and Engineering,2021,21(2):512-521.
20 马燕妮.荆门地区龙马溪组页岩储层特征及含气性控制因素分析[D].成都:西南石油大学,2015:63-64.
MA Y N.Shale Reservoir Characteristics and Gas Bearing Controlling Factors of Longmaxi Formation in Jingmen Area[D].Chengdu:Southwest Petroleum University,2015:63-64.
21 邓铭哲,何登发.当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义[J].成都理工大学学报(自然科学版),2018,45(4):487-500.
DENG M Z, HE D F.The geologyical structure in the Dangya area and its significance to the shale gas exploration in Yichang area,China[J].Journal of Chengdu University of Technology(Science & Technology Edition),2018,45(4):487-500.
22 赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108.
ZHAO D F, GUO Y H, XIE D L, et al.Fractal characteristics of shale reservoir pore based on nitrogen adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108.
23 熊健,梁利喜,刘向君.基于氮气吸附法的渝东南下寒武统页岩孔隙的分形特征[J].科技导报,2014,32(19):53-57.
XIONG J, LIANG L X, LIU X J.Fractal characteristics of pore structure of Lower Cambrian shale in southeast Chongqing using nitrogen adsorption data[J].Science & Technology Review,2014,32(19):53-57.
24 BRUNAUER S, EMMET P H, TELLER E.Adsorption of gases in multimo-lecular layers[J].Journal of the American Chemical Society,1938,60(2):309-319.
25 THIERFELDER C, WITTE M S, BLANKENBURG S, et al.Methane adsorption on graphene from first principles including dispersion interaction[J].Surface Science,2011,605(7-8):746-749.
26 ROUQUEROL J, AVNIR D,FAIRBRIDGE C W, et al.Recommendations for the characterization of poroussolids[J].Pure and Applied Chemistry, 1994,66:1739-1758.
27 朱汉卿,贾爱林,位云生,等.蜀南地区五峰—龙马溪组页岩微观孔隙结构及分形特征[J].科学技术与工程,2018,18(10):12-19.
ZHU H Q, JIA A L, WEI Y S, et al.Microscopic pore structure and fractal characteristics of Wufeng-Longmaxi shale, south Sichuan[J].Science Technology and Engineering,2018,18(10):12-19.
28 徐如人,庞文琴,霍启升,等.分子筛与多孔材料化学[M].北京:科学出版社,2004:51-112.
XU R R, PANG W Q, HOU Q S, et al.Chemistry-Zeolites and Porous Materials[M].Beijing:Science Press,2004:51-112.
29 THOMMES M,KANEKO K,NEǏMARK A V,et al.Physisor-ption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J].Pure and Applied Chemistry,2015,87(9-10):1051-1069.
30 李鹏,闫长辉,田园媛,等.基于等温吸附曲线形态研究泥页岩孔隙结构特征[J].科技资讯,2015,13(18):240-241.
LI P, YAN C H, TIAN Y Y,et al.Study on pore structure of shale based on isothermal adsorption curve morphology[J].Science & Technology Information,2015,13(18):240-241.
31 SING K S W.Adsorption methods for the characterization of porous materials[J].Advances in Colloid & Interface Science, 1998,76(98):3-11.
32 GREGG S J, SING K S W.Adsorption,Surface Area and Porosity[M].New York :Academic Press,1982:371.
33 谢晓明,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102,202-203.
XIE X M, TANG H M, WANG C H, et al.Contrast of nitrogen adsorption and mercury porosimetry method in analysis of shale's pore size diatuibution[J].Natural Gas Industry,2006, 26(12):100-102,202-203.
34 FANG H W, CHEN M H, CHEN Z H.Machanics characteristic analysis of pores on the surface of sand grain before pollution[J].Science in China(Series G),2008,38(6):714-720.
35 AVNER D, JARONIEC M.An siotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J].Langmuir, 1989,5(6):1431-1433.
36 JARONIEC M.Evaluation of the fractal dimension from a single adsorption isotherm[J].Langmuir,1995,11(6):2316-2317.
37 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版),2014,50(3):476-486.
WANG S F, ZOU C N, DONG D Z, et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(3):476-486.
38 王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征[J].断块油气田,2018,25(5):589-592.
WANG R Y, YIN S, GONG D J, et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].Fault-Block Oil & Gas Field,2018,25(5):589-592.
39 曹涛涛,宋之光,刘光祥,等.氮气吸附法—压汞法分析页岩孔隙、分形特征及其影响因素[J].油气地质与采收率,2016,23(2):1-8.
CAO T T,SONG Z G,LIU G X,et al.Characteristics of shale pores,fractal dimension and their controlling factors determined by nitrogen adsorption and mercury injection methods[J].Petroleum Geology and Recovery Efficiency,2016,23(2):1-8.
[1] Guoxin SHAN, Peng CHENG, Xianming XIAO, Jian SUN, Ping GAO. Water-bearing characteristics in overmature shales from coal measure strata based on equilibrium water vapor adsorption and its geological significances [J]. Natural Gas Geoscience, 2022, 33(4): 666-676.
[2] Pengwei WANG,Guangxiang LIU,Zhongbao LIU,Xiao CHEN,Peng LI,Beibei CAI. Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou [J]. Natural Gas Geoscience, 2022, 33(3): 431-440.
[3] Jian WANG, Lu ZHOU, Jin LIU, Jun CHEN, Menglin ZHENG, Huan JIANG, Baozhen ZHANG. Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin [J]. Natural Gas Geoscience, 2022, 33(1): 116-124.
[4] Teng SONG, Shu-jing BAO, Ke CHEN, Zhi ZHOU, Hao-han LI, Yu-xue LEI, Ke DUAN. Micro reservoir structure characteristic and its influencing factors of Lower Cambrian shale in northern Shennongjia area, northwestern Hubei, China [J]. Natural Gas Geoscience, 2021, 32(6): 871-887.
[5] Chun-li GUO, Shuang YANG, An-dong WANG, Yi-ting WANG, Shuang-long ZHANG, Xing QI. Study on the Lower Cambrian marine shale reservoir and methane adsorption characteristics in Xiuwu Basin [J]. Natural Gas Geoscience, 2021, 32(4): 598-610.
[6] Jie XU, Wei-hua GUO, Hao-tian LIU, Zhen QIN, Qiang MENG, Hui-fei TAO. Micro-pore structure characteristics and quantitative characterization of Silurian Longmaxi shale in western Hubei and Hunan areas [J]. Natural Gas Geoscience, 2021, 32(4): 611-622.
[7] Yi-xiong WU, Xiang-yang HU, Juan-zi YI, Dong YANG, Yu-nan LIANG. Research and application of acoustic time difference response characteristics of high temperature and overpressure gas reservoir in Yinggehai Basin [J]. Natural Gas Geoscience, 2021, 32(2): 298-307.
[8] Quan-qi DAI, Gui-wen WANG, Lian-chang ZHANG, Gang LI, Li-juan MA, Shu-fang GAO, Zhi-chao CHENG, Di ZHANG, Guo-liang LIU. Characteristics and logging prediction methods of pore structure facies in the tight reservoir and its constraints on economic recoverable reserve: Case study of mixed rocks in Yingxi area, Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(2): 308-318.
[9] Ying-kun ZHANG, Shang-bin CHEN, Xue-yuan LI, Hui-jun WANG. Hydraulic fracturing simulation technology of shale gas reservoir and application of extended finite element method [J]. Natural Gas Geoscience, 2021, 32(1): 109-118.
[10] Teng LI, Cai-fang WU. The grain size effect on pore structure characteristics of high-rank coal before and after the methane adsorption [J]. Natural Gas Geoscience, 2021, 32(1): 125-135.
[11] Ji-sheng MA, Ya CAI, Zhen-qin HU, Chong LU, Wei WANG. The water content and its effects on the pore structures of the shales from the coal-bearing Taiyuan Formation in the Yushe area of the Qinshui Basin [J]. Natural Gas Geoscience, 2021, 32(1): 145-154.
[12] Shi-ming LIU, Shu-heng TANG, Ting HUO, Fu-rong TAN, Da-cheng LIU, Jin-xi WANG. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081.
[13] Yi-li KANG, Chao-jin LI, Li-jun YOU, Jia-xue LI, Zhen ZHANG, Tao WANG. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(4): 532-541.
[14] Qing-yan MEI, Cheng ZOU, Shan YANG, Sheng-lai YANG, Yi ZHAO, Wei ZHENG. The influence of pore structure and heterogeneity on development of carbonate gas reservoir [J]. Natural Gas Geoscience, 2020, 31(12): 1757-1765.
[15] Hong-bin FU, Kun YUAN, Shu-fan LU, Xiang-lin CHEN, Tuo LIN, Sheng-jiang DU, Ben HE, Xiang-jian LUO. Microscopic pore structure characteristics and its effect on gas-bearing property of high-rank coal in Upper Permian Longtan Formation in western Guizhou [J]. Natural Gas Geoscience, 2020, 31(12): 1814-1825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[7] . [J]. Natural Gas Geoscience, 0, (): 9 .
[8] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[9] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 42 -47 .
[10] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .