Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (4): 556-571.doi: 10.11764/j.issn.1672-1926.2021.11.004

Previous Articles     Next Articles

Comparison of reservoir characteristics between Jurassic Ahe Formation and Cretaceous Bashijiqike Formation in Kuqa Depression of Tarim Basin and implications for exploration and developmentt

Ke WANG1,2(),Ronghu ZHANG1,2,Junpeng WANG1,2,Chaofeng YU1,2,Zhao YANG1,2,Yan′gang TANG3   

  1. 1.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
    2.Tarim Basin Research Center,PetroChina Research Institute of Petroleum Exploration & Development,Korla 841000,China
    3.Research Institute of Petroleum Exploration & Development,PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2021-05-11 Revised:2021-11-10 Online:2022-04-10 Published:2022-04-22
  • Supported by:
    The Prospective and Fundemental Project of CNPC in China′s 14th Five Year Plan(2021DJ0302);the China National Key Research and Development Program(2019YFC0605501)

Abstract:

The northern tectonic belt and Kelasu tectonic belt within the Kuqa Depression are in the same regional tectonic background, and have similar petroleum geology conditions. The target strata of the two tectonic belts are Lower Jurassic Ahe Formation(J1a) and Lower Cretaceous Bashijiqike Formation(K1bs), respectively, and reservoir characteristics are important factors that lead to differences of exploration and development effect. Systematically comparison between reservoir characteristics of J1a and K1bs has significant meaning to exploration and development of both tectonic belts. From the aspects of reservoir sedimentary background, reservoir matrix and fracture characteristics, and reservoir sensitivity using core, thin sections and image logging data, the comparison of reservoir features between J1a and K1bs and its mechanism were systematically carried out. And based on analyses above, some exploration and development enlightenment were obtained. The results show two conclusions. Firstly, structural style is an important factor that controls favorable reservoir distribution. The structural style of Kelasu tectonic belt is primarily faulted anticline formed by thrusting from Tianshan orogenic belt. The long axis of anticline is favorable area of the K1bs fractured reservoir, and therefore, wells that deployed here have high probability to get high gas production. The northern tectonic belt has complex structural styles, and thus the formation mechanism and favorable reservoir prediction of J1a fractured-porous reservoir that controlled by multi-factors need further research. Secondly, reservoir characteristics and formation fluid environment are important references for reservoir reformation measure. The K1bs has high calcite cement content, acidic formation fluid, weak reservoir sensitivity, and develops tectonic fractures. Therefore to the K1bs, the reservoir reformation should use both acidizing and fracturing. While the J1a has low calcite cement content, alkaline formation fluid, moderate reservoir sensitivity, and also develop tectonic fractures. Therefore, the reservoir reformation should give priority to fracturing.

Key words: Sedimentary facies, Reservoir fracture, Reservoir sensitivity, Structural style, Favorable reservoir distribution, Reservoir reformation measure, Kuqa Depression

CLC Number: 

  • TE122.2

Fig.1

Tectonic location and structural characteristics of the northern tectonic belt and the Kelasu tectonic belt of Kuqa Depression"

Fig.2

Stratigraphic system of Mesozoic-Cenozoic in Kuqa Depression"

Fig.3

Sedimentary facies of J1a(a) in the northern tectonic belt and K1bs(b) in the Kelasu tectonic belt of Kuqa Depression"

Fig.4

Sand body and interbed distribution profile of J1a(a)in the northern tectonic belt and K1bs(b) in the Kelasu tectonic belt of Kuqa Depression(the profile location is shown in Fig.3)"

Fig.5

Rock components of J1ain the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

Fig.6

Reservoir space types of J1ain the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

Fig.7

Histogram of core porosity and permeability of J1a(a),(b) in the northern tectonic belt and K1bs(c),(d) in the Kelasu tectonic belt of Kuqa Depression"

Fig.8

Reservoir fractures feature of J1ain the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

Fig.9

Diagenesis of J1ain the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

Fig.10

Burial history and pore evolution of J1a(a) in the northern tectonic belt and K1bs(b)in the Kelasu tectonic belt of Kuqa Depression"

Fig.11

Reservoir sensitivity of J1a in the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

Table 1

Reservoir characteristics comparison of J1ain the northern tectonic belt and K1bs in the Kelasu tectonic belt of Kuqa Depression"

储层特征/地层北部构造带阿合组克拉苏构造带巴什基奇克组
沉积相辫状河三角洲平原辫状河三角洲前缘
岩性中—粗砂岩为主中—细砂岩为主
岩石成分石英18%~68%,平均40.2%33%~60%,平均45.0%
长石2%~30%,平均15.1%17%~45%,平均30.8%
岩屑20%~76%,平均44.7%12%~47%,平均24.2%
岩石结构分选系数1.28~2.34,平均1.521.21~1.78,平均1.35
磨圆度次棱角状—次圆状为主次棱角状—次圆状为主
颗粒接触关系线、凹凸接触—线接触为主点—线接触为主
胶结类型孔隙—接触式和压嵌—孔隙式孔隙—接触式,偶见压嵌—孔隙式
储集空间微孔隙和粒内溶孔为主原生粒间孔为主
胶结物含量与类型0.9%~4.7%,平均1.8%,包括(铁)方解石、 (铁)白云石、硅质和黄铁矿等1%~40%,平均8.3%,包括方解石、白云石、硅质、 钠长石和硬石膏等
储层物性实测孔隙度2.4%~18.4%,平均7.2%,渗透率 (0.02~120.75)×10-3 μm2,中值0.91×10-3 μm2实测孔隙度2.0%~12.6%,平均4.3%,渗透率 (0.01~131.00)×10-3 μm2,中值0.05×10-3 μm2
原始孔隙度31%~39%,平均36%34%~40%,平均38%
宏观裂缝特征裂缝线密度平均0.20条/m,岩心裂缝开度0~0.5 mm裂缝线密度平均0.57条/m,岩心裂缝开度0.2~1.0 mm
微观裂缝特征包括粒内缝、粒缘缝、穿粒缝,裂缝面孔率平均0.79%以穿粒缝为主,裂缝面孔率平均约0.17%
储层类型裂缝—孔隙型储层裂缝性储层
储层敏感性较强较弱

Fig.12

Distribution of fracture permeability and single well open flow capacity of K1bs in Keshen-8 gas reservoir in the Kelasu structural belt of Kuqa Depression"

Fig.13

Relationship between maximum paleo tectonic stress and reservoir of J1a in the northern tectonic belt of Kuqa Depression"

Fig.14

Effect of production increasing by reservoir reform of K1bs in Kelasu tectonic belt of Kuqa Depression"

Fig.15

Effect of production increasing by reservoir reform at the depth of 4 776-4 785 m and 4 969-4 982 m of J1a in Well Yinan2 of the northern tectonic belt of Kuqa Depression"

1 王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
WANG Z M. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.
2 GUO X,LIU K,JIA C,et al. Effects of early petroleum charge and overpressure preservation in the giant Kela-2 Gas Field,Kuqa Depression,Tarim Basin,northwest China[J]. AAPG Bulletin,2016,100(2):191-212.
3 LAI J, WANG G, CHAI Y, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J].AAPG Bulletin,2017,101(6):829-862.
4 李建忠.第四次油气资源评价[M].北京:石油工业出版社,2019.
LI J Z. Fourth Assessment for Oil and Gas Resource[M].Beijing: Petroleum Industry Press,2019.
5 鲁雪松,柳少波,李伟,等.低勘探程度致密砂岩气区地质和资源潜力评价——以库车东部侏罗系致密砂岩气为例[J].天然气地球科学,2014,25(2):178-184.
LU X S, LIU S B, LI W, et al. Geological and resource evaluation in tight sandstone gas plays of low exploration degree: A case study of Jurassic tight sandstone gas in east Kuqa Basin[J].Natural Gas Geoscience,2014,25(2):178-184.
6 卢玉红,钱玲,鲁雪松,等.迪北地区致密气藏地质条件及资源潜力[J].大庆石油地质与开发,2015,34(4):8-14.
LU Y H, QIAN L, LU X S, et al. Geological conditions and resource potential of the tight gas reservoirs in Dibei area[J].Petroleum Geology and Oilfield Development in Daqing,2015,34(4):8-14.
7 李谨,王超,李剑,等.库车坳陷北部迪北段致密油气来源与勘探方向[J].中国石油勘探,2019,24(4):485-497.
LI J, WANG C,LI J,et al. Source and exploration direction of tight oil and gas in the Dibei section of northern Kuqa Depression[J].China Petroleum Exploration,2019,24(4):485-497.
8 琚岩,孙雄伟,刘立炜,等.库车坳陷迪北致密砂岩气藏特征[J].新疆石油地质,2014,35(3):264-267.
JU Y, SUN X W, LIU L W, et al. Characteristics of Jurassic tight sandstone gas reservoir in Dibei area of Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology,2014,35(3):264-267.
9 PANG X, PENG J, JIANG Z, et al. Hydrocarbon accumulation processes and mechanisms in Lower Jurassic tight-sandstone reservoirs in the Kuqa subbasin, Tarim Basin, NW China: A case study of the Dibei tight-gas field[J].AAPG Bulletin,2019,103(4):769-796.
10 张荣虎,杨海军,魏红兴,等.塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J].天然气地球科学,2019,30(9):1243-1252.
ZHANG R H, YANG H J, WEI H X, et al. The sandstone characteristics and hydrocarbon exploration significance of Lower Jurassic in middle east section of northern tectonic belt in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2019,30(9):1243-1252.
11 张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报,2014,35(6):1057-1069.
ZHANG R H, YANG H J, WANG J P, et al. The formation mechanism and exploration significance of ultra-deep, low-permeability and tight sandstone reservoirs in Kuqa Depression, Tarim Basin[J].Acta Petrolei Sinica,2014,35(6):1057-1069.
12 鲁雪松,赵孟军,刘可禹,等.库车前陆盆地深层高效致密砂岩气藏形成条件与机理[J].石油学报,2018,39(4):365-378.
LU X S, ZHAO M J, LIU K Y, et al. Forming condition and mechanism of highly effective deep tight sandstone gas reservoir in Kuqa foreland basin[J].Acta Petrolei Sinica,2018,39(4):365-378.
13 王招明,李勇,谢会文,等.库车前陆盆地超深层大油气田形成的地质认识[J].中国石油勘探,2016,21(1):37-43.
WANG Z M, LI Y, XIE H W, et al. Geological understanding on the formation of large-scale ultra-deep oil-gas field in Kuqa foreland basin[J].China Petroleum Exploration,2016,21(1):37-43.
14 江同文,孙雄伟.库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J].天然气工业,2018,38(6):1-9.
JIANG T W, SUN X W. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin, Tarim Basin: Understanding points and technical countermeasures[J].Natural Gas Industry,2018,38(6): 1-9.
15 何登发,周新源,杨海军,等.库车坳陷的地质结构及其对大油气田的控制作用[J].大地构造与成矿学,2009,33(1):19-32.
HE D F, ZHOU X Y, YANG H J, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: A clue from new shot seismic data[J].Geotectonica et Metallogenia,2009,33(1):19-32.
16 张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.
ZHANG H L,ZHANG R H,YANG H J, et al. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin[J].Acta Petrologica Sinica,2012,28(3):827-835.
17 张玮,徐振平,赵凤全,等.库车坳陷东部构造变形样式及演化特征[J].新疆石油地质,2019,40(1):48-53.
ZHANG W,XU Z P,ZHAO F Q,et al.Structural deformation styles and tectonic evolution characteristics in eastern Kuqa Depression[J].Xinjiang Petroleum Geology,2019,40(1):48-53.
18 张妮妮,刘洛夫,苏天喜,等.库车坳陷东部下侏罗统致密砂岩储层特征及主控因素[J].沉积学报,2015,33(1):160-169.
ZHANG N N, LIU L F, SU T X, et al. Reservoir characteristics and main controlling factors of the Lower Jurassic tight sandstone in eastern Kuqa Depression[J]. Acta Sedimentologica Sinica,2015,33(1):160-169.
19 杨克基,漆家福,马宝军,等.库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析[J].大地构造与成矿学,2018,42(2):211-224.
YANG K J, QI J F, MA B J, et al. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa Depression and their controlling factors[J].Geotectonica et Metallogenia,2018,42(2):211-224.
20 高文杰,李贤庆,张光武,等.塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学,2018,29(2):226-235.
GAO W J, LI X Q, ZHANG G W, et al. The relationship research between densification of reservoir and accumulation of the deep tight sandstone gas reservoirs of the Kelasu tectonic zone in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2018,29(2):226-235.
21 王艳忠,操应长,葸克来,等.碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J].石油学报,2013,34(6):1100-1111.
WANG Y Z, CAO Y C, XI K L, et al. A recovery method for porosity evolution of clastic reservoirs with geological time: A case study from the upper submember of Es4 in the Dongying Depression,Jiyang Subbasin[J].Acta Petrolei Sinica,2013,34(6):1100-1111.
22 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学,2018,29(7):942-950.
YANG H J, ZHANG R H, YANG X Z, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2018,29(7):942-950.
23 寿建峰,张惠良,沈扬,等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006,22(8):2165-2170.
SHOU J F, ZHANG H L, SHEN Y, et al. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J].Acta Petrologica Sinica,2006,22(8):2165-2170.
24 彭涛,张海潮,任自强,等.两淮煤田煤系地层岩石热导率特征[J].高校地质学报,2014,20(3):470-475.
PENG T, ZHANG H C, REN Z Q, et al. Characteristics of rock thermal conductivity of coal measure strata in Huainan-Huaibei coalfield[J].Geological Journal of China Universities,2014,20(3):470-475.
25 吴海,赵孟军,卓勤功,等.膏盐岩对地层温度及烃源岩热演化的影响定量分析——以塔里木库车前陆盆地为例[J].石油勘探与开发,2016,43(4):550-558.
WU H, ZHAO M J, ZHUO Q G, et al. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: A case study of Kuqa foreland basin, western China[J].Petroleum Exploration and Development,2016,43(4):550-558.
26 赵振宇,周瑶琪,马晓鸣,等.含油气盆地中膏盐岩层对油气成藏的重要影响[J].石油与天然气地质,2007,28(2):299-308.
ZHAO Z Y, ZHOU Y Q, MA X M, et al. The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin[J].Oil & Gas Geology,2007,28(2): 299-308.
27 杨宪彰,雷刚林,张国伟,等.库车坳陷克拉苏构造带膏盐岩对油气成藏的影响[J].新疆石油地质,2009,30(2):201-204.
YANG X Z, LEI G L, ZHANG G W, et al. Effect of gypsum-salt rocks on hydrocarbon accumulation in Kelasu structural belt of Kuqa Depression[J].Xinjiang Petroleum Geology,2009,30(2):201-204.
28 袁静,成荣红,朱忠谦,等.库车坳陷DB气田白垩系巴什基奇克组砂岩的多期溶蚀[J].石油与天然气地质,2016,37(4):546-555.
YUAN J, CHENG R H, ZHU Z Q, et al. Multi-staged dissolution of sandstone in Cretaceous Bashijiqike Formation in DB gas field of Kuqa Depression, Tarim Basin[J].Oil & Gas Geology,2016,37(4):546-555.
29 潘荣,朱筱敏,谈明轩,等.库车坳陷克拉苏冲断带深部巴什基奇克组致密储层孔隙演化定量研究[J].地学前缘,2018,25(2):159-169.
PAN R, ZHU X M, TAN M X, et al. Quantitative research on porosity evolution of deep tight reservoir in the Bashijiqike Formation in Kelasu structure zone, Kuqa Depression[J].Earth Science Frontiers,2018,25(2):159-169.
30 冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展,2018,33(3):305-320.
FENG J R, GAO Z Y, CUI J G, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression: Insight from diagensis modeling experiments under the influence of burial mode[J]. Advances in Earth Science,2018,33(3):305-320.
31 唐雁刚,罗金海,马玉杰,等.库车坳陷下侏罗统碱性成岩环境对储集物性的影响[J]. 新疆石油地质,2011,32(4):356-358.
TANG Y G,LUO J H,MA Y J,et al. Effect of alkaline diage-netic environment of Lower Jurassic on reservoir property in Ku-qa Depression[J]. Xinjiang Petroleum Geology,2011,32(4):356-358.
32 宫清顺,寿建峰,姜忠朋,等.准噶尔盆地乌尔禾油田三叠系百口泉组储层敏感性评价[J].石油与天然气地质,2012,33(2):307-313.
GONG Q S, SHOU J F, JIANG Z P, et al. Reservoir sensitivity evaluation of the Triassic Baikouquan Formation in Wuerhe Oilfield,Junggar Basin[J].Oil & Gas Geology,2012,33(2):307-313.
33 袁文芳,秦红,王锋,等.致密砂岩储层速敏效应形成机理及其分布规律研究——以库车坳陷东部阿合组为例[J].地质科学,2014,39(4):1279-1286.
YUAN W F, QIN H, WANG F, et al. The formation mechanism and distribution of velocity sensitive effect in tight sandstone reservoir: Taking Ahe Formation in east Kuqa Depression, Tarim Basin, as an example[J]. Chinese Journal of Geology,2014,39(4):1279-1286.
34 袁学芳,王茜,唐洪明,等.致密砂岩储层流体敏感性评价方法——以塔里木盆地克拉苏气田克深9井区K1 bs组为例[J].天然气工业,2016,36(12):59-66.
YUAN X F, WANG Q, TANG H M, et al. An improved fluid sensitivity evaluation method for tight sandstone gas reservoirs: A case study of K1 bs in Well Keshen 9 of the Kelasu Gasfield,Tarim Basin[J].Natural Gas Industry,2016,36(12):59-66.
35 刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):469-478.
LIU C, ZHANG R H, ZHANG H L, et al. Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt, Tarim Basin, NW China[J]. Petroleum Exploration and Development,2017,44(3):469-478.
36 王俊鹏,张惠良,张荣虎,等.裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例[J].石油与天然气地质,2018,39(1):77-88.
WANG J P, ZHANG H L, ZHANG R H, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: A case study of Keshen Gas Field in Kuqa Depression, Tarim Basin[J].Oil & Gas Geology,2018,39(1):77-88.
37 李国欣,易士威,林世国,等.塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J].天然气地球科学,2018,29(10):1506-1517.
LI G X, YI S W, LIN S G, et al. Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2018,29(10):1506-1517.
[1] Ke XU, Jun TIAN, Haijun YANG, Hui ZHANG, Wei JU, Xinyu LIU, Zhimin WANG, Lu FANG. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(1): 13-23.
[2] Yading LI, Youlian CHEN, Wei YAN, Ruixue DAI, Cheng XI, Yuan HE. Research on sedimentary evolution characteristics of Cambrian Canglangpu Formation, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(9): 1334-1346.
[3] Jin LI, Jian LI, Chao WANG, Dejiang LI, Zhongxi HAN, Haizu ZHANG, Hui ZHOU, Yuhong LU, Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[4] Zhou YU, Jin-gao ZHOU, Cheng-shan LI, Xiao-jiao SONG, Chao LUO, Xing-ning WU, Dong-xu WU, Cong HU. Tectonic-lithofacies paleogeographic characteristics of Ordovician Kelimoli and Wulalike stages in the western edge of Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(6): 816-825.
[5] Gui-zhen LIU, Wei GAO, Jia-sheng WEI, Wen TANG. Sedimentary characteristics and sequence stratigraphy in a mixed silicilastic-carbonate depositional system: Case study of Benxi Formation in Gaoqiao area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(3): 382-392.
[6] Mingqiang LI, Liqiang ZHANG, Zhenghong LI, Liang ZHANG, Lixin MAO, Xiaotong XU. Diagenetic facies division and logging identification of tight sandstone in the lower conglomerate member of Lower Jurassic Ahe Formation in Tarim Basin: Case study of Yiqikelike area in Kuqa Depression [J]. Natural Gas Geoscience, 2021, 32(10): 1559-1570.
[7] Shou-liang LUAN. Sedimentary characteristics and model of Quaternary Qigequan Formation in Quanji section of Qaidam Basin [J]. Natural Gas Geoscience, 2020, 31(6): 800-808.
[8] Ke WANG, Rong-hu ZHANG, Chao-feng YU, Zhao YANG, Yan-gang TANG, Hong-xing WEI. Characteristics and controlling factors of Jurassic Ahe reservoir of the northern tectonic belt, Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(5): 623-635.
[9] Yi WANG, Jun-fei LI, Jia-qiong PENG, Pu WEI, Hong TANG, Shun-cun ZHANG, Hui GUO. Fine analysis of sedimentary facies and main controlling factors of reservoir in the first sand group of 1st member of Cretaceous Qingshuihe Formation in SN31 well area of Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 194-208.
[10] Chao-qun SHI, Zuo-tao WANG, Wen-hui ZHU, Jun JIANG, Hui-fang ZHANG, Si-yu ZHOU, Hong LOU, Xiao-jun ZUO, Gang LI, Zhen-hong WANG. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(12): 1687-1699.
[11] Rong-hu Zhang, Hai-jun Yang, Hong-xing Wei, Chao-feng Yu, Zhao Yang, Jin Wu. The sandstone characteristics and hydrocarbon exploration signification of Lower Jurassic in middle east section of northern tectonic belt in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1243-1252.
[12] Wei Qiang, Li Xian-qing, Sun Ke-xin, Li Jin, Xiao Zhong-yao, Liang Wan-le, Zhang Ya-chao, . Geochemical characteristics of deep-seated natural gas accumulation of the Keshen large gas field in the Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(6): 897-907.
[13] Jia Ai-lin, Tang Hai-fa, Han Yong-xin, Lv Zhi-kai, Liu Qun-ming, Zhang Yong-zhong, Sun He-dong, Huang Wei-gang, Wang Ze-long. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(6): 908-918.
[14] Zhang Hui, Yin Guo-qing, Wang Hai-ying. Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin [J]. Natural Gas Geoscience, 2019, 30(3): 379-388.
[15] Bao Jian-ping, Zhu Cui-shan, Shen Xu. Study on diamondoids and genetic mechanism of condensates from the Kela 2 structure in the Kuche Depression [J]. Natural Gas Geoscience, 2018, 29(9): 1217-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[5] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[6] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[7] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[8] . [J]. Natural Gas Geoscience, 0, (): 9 .
[9] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[10] LI Mei-jun; LU Hong; WANG Tie-guan;WU Wei-qiang; LIU Ju;GAO Li-hui. RELATIONSHIP BETWEEN MAGMA ACTIVITY AND CO2 GAS ACCUMULATION IN FUSHAN DEPRESSION, BEIBUWAN BASIN[J]. Natural Gas Geoscience, 2006, 17(1): 55 -59 .