Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (4): 533-547.doi: 10.11764/j.issn.1672-1926.2021.11.003

Previous Articles     Next Articles

The first discovery of the ancient hydrocarbon source rocks in the Altun area, southeast margin of the Tarim Basin

Wangpeng LI1(),Yi WANG1,Yixiong QIAN2,Zhibing SHAO2,Chenglin CHU2,Zhongpei ZHANG1,Huili LI1,Weili YANG1   

  1. 1.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China
    2.Institute of Petroleum Geology,Petroleum Exploration and Production Research Institute,SINOPEC,Wuxi 214126,China
  • Received:2021-07-30 Revised:2021-11-08 Online:2022-04-10 Published:2022-04-22
  • Supported by:
    The National Natural Science Foundation of China(41902149);the Project of Science and Technology Department of SINOPEC(P17046-3)

Abstract:

The Precambrian is an important petroliferous system in the world. The Precambrian in the Tarim Basin has a large depth of burial, and it is uncertain whether large-scale high-quality hydrocarbon source rocks are developed. Recently, the team discovered a new set of thick black shale in Hongliugou, Ruoqiang County, Xinjiang Uygur Autonomous Region during field investigation in the Altun area, southeastern margin of the Tarim Basin. Field measurements of outcrop profile show that the profile is developed continuously with a thickness of ca. 326.2 m and a phyllite section is at the bottom.The lower part is siliceous rock with a thickness of ca. 180.1 m, which is dominated by siliceous rock, sandy mudstone and siltstone. The upper part is sandy mudstone with a thickness of ca. 132.3 m, which is mainly composed of black shale, sandy mudstone and siltstone. The measured section is overlaid with stromatolite dolomite. The newly discovered black shale is located in the middle sub-member of the upper sand and mudstone section with a thickness of ca. 60 m, organic carbon content (TOC) of 1.04%-4.81%, and it is developed in the reduction-sedimentary environment. The detrital zircon U-Pb ages of the siltstone in the lower section indicate that the maximum sedimentary age of this set of black shale is later than the late Neoproterozoic Tonian, and its formation may be related to the global glacial events. Accurate chronological data are not available for the newly discovered black shale, however, regional geological, stratigraphic contact relationships in the field, and newly obtained detrital zircon U-Pb ages support that the sedimentary age of the black shale was prior to the Cambrian. It may be a set of ancient hydrocarbon source rocks with good quality found in the periphery of the Tarim Basin. It is of great significance in oil and gas exploration and paleo-environment research, and the new findings will strengthen the confidence of the oil and gas exploration in the deep ancient strata of the Tarim Basin.

Key words: Tarim Basin, Neoproterozoic, Ancient hydrocarbon source rocks, Deep strata, Diamictite

CLC Number: 

  • TE122.1+13

Fig. 1

Regional geological map of Hongliugou region"

Fig. 2

The measured geological section of Hongliugou"

Fig.3

Field outcrop of the Hongliugou section"

Table 1

U-Pb dating results of detrital zircon from siltstone of the Hongliugou section (sample S17HL01)"

测试点含量/10-6Th/U同位素比值年龄/Ma

谐和度

/%

ThU

207Pb

/206Pb

±1σ

207Pb

/235U

±1σ

206Pb

/238U

±1σ

207Pb

/206Pb

±1σ

207Pb

/235U

±1σ

206Pb

/238U

±1σ
S17HL01-13814800.790.121 50.003 16.124 20.145 90.360 20.005 01 988.951.11 993.720.81 983.023.799
S17HL01-235380.900.063 30.003 41.244 60.072 20.142 20.003 7716.7114.8820.932.7856.920.795
S17HL01-4953190.300.069 70.002 01.479 60.038 40.152 90.002 1920.457.9922.115.7917.412.099
S17HL01-52163360.640.078 70.002 41.661 00.048 90.151 50.002 01 164.865.7993.818.7909.111.091
S17HL01-81486360.230.071 60.001 81.355 40.036 20.135 60.002 2973.856.0869.915.6819.812.594
S17HL01-93409980.340.073 90.002 11.397 40.039 70.135 80.002 21 038.957.1887.916.8821.012.792
S17HL01-101291281.010.072 30.002 61.479 20.056 40.147 30.002 9995.473.0921.923.1885.516.495
S17HL01-112756570.420.073 00.001 81.481 70.035 40.145 70.001 91 013.049.2922.914.5876.610.594
S17HL01-122562760.920.074 00.002 21.567 40.050 50.151 70.002 31 042.656.5957.420.0910.412.894
S17HL01-13995470.180.065 40.001 61.256 30.031 90.137 60.002 1787.051.1826.314.4831.011.899
S17HL01-143774990.750.099 20.001 83.999 10.078 80.288 90.003 91 609.333.31 634.016.01 636.019.799
S17HL01-15986360.150.075 60.001 51.746 30.042 30.165 00.002 81 087.040.71 025.815.7984.615.295
S17HL01-164865100.950.076 10.002 11.482 00.042 50.139 60.002 31 098.255.6923.117.4842.612.790
S17HL01-173978240.480.078 00.001 91.609 90.041 10.147 60.002 01 146.348.1974.116.0887.611.390
S17HL01-182344100.570.090 10.001 83.334 40.063 30.264 90.003 31 428.737.81 489.214.81 514.816.698
S17HL01-191612630.610.105 00.002 23.791 50.079 40.259 10.004 11 713.937.81 591.016.81 485.520.893
S17HL01-20521220.430.079 50.002 22.119 00.062 40.191 90.003 21 187.054.21 155.020.31 131.517.597
S17HL01-211562290.680.169 20.003 011.202 30.192 10.476 00.006 12 550.329.32 540.116.02 509.826.798
S17HL01-23621330.470.180 60.003 511.850 00.290 10.469 80.007 92 658.331.02 592.622.92 482.734.795
S17HL01-242253310.680.066 50.001 61.296 20.030 40.140 60.001 6821.950.0844.013.4848.39.199
S17HL01-251451760.820.068 10.002 41.268 50.044 20.134 40.002 3872.272.2831.719.8813.013.197
S17HL01-272732061.320.091 90.002 63.123 10.096 70.244 70.004 11 464.853.41 438.423.81 411.321.498
S17HL01-29942440.380.069 60.002 11.303 80.040 90.135 10.002 8916.767.6847.418.0817.216.196
S17HL01-30721070.680.074 90.003 01.509 70.058 70.144 80.002 31 065.780.4934.323.8871.713.093
S17HL01-312404930.490.073 80.001 51.509 80.031 30.147 50.001 71 036.742.6934.412.7887.19.594
S17HL01-332902601.110.155 70.003 88.122 40.249 60.374 50.009 12 409.641.02 244.727.82 050.742.990
S17HL01-361712500.680.077 20.002 81.925 10.063 50.179 50.003 31 127.872.21 089.822.01 064.417.997

Table 2

U-Pb dating results of detrital zircon from siltstone of the Hongliugou section (sample S17HL04)"

测试点含量/10-6Th/U同位素比值年龄/Ma谐和度 /%
ThU207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ
S17HL04-13415840.580.064 90.002 21.207 30.040 60.133 80.002 6772.272.2803.918.7809.614.799
S17HL04-21021870.540.076 80.004 71.485 60.082 50.139 10.002 91 116.7122.2924.533.7839.516.590
S17HL04-3721690.430.146 80.003 59.177 40.233 00.448 10.007 02 308.38.32 355.923.22 386.731.398
S17HL04-41381670.830.077 60.002 91.779 20.060 80.166 00.003 71 136.175.21 037.922.2990.120.495
S17HL04-51382580.540.076 90.002 71.729 60.061 80.161 50.003 11 117.665.71 019.623.0964.917.394
S17HL04-71892360.800.078 60.004 21.579 70.083 90.144 60.002 71 162.7107.4962.333.0870.815.490
S17HL04-81862420.770.065 40.002 41.245 00.045 80.136 60.002 5787.075.9821.220.7825.614.399
S17HL04-12861150.750.127 70.003 16.227 90.170 30.349 00.005 92 066.438.12 008.423.91 929.928.196
S17HL04-133493870.900.073 10.002 11.285 20.037 70.126 30.002 01 016.753.2839.216.7766.511.490
S17HL04-142163810.570.068 10.001 81.193 60.032 30.125 70.001 9872.253.7797.614.9763.410.895
S17HL04-156306021.050.073 30.002 11.242 40.037 90.122 60.002 71 033.357.4820.017.2745.315.690
S17HL04-165094551.120.068 40.001 71.189 70.030 30.125 20.001 8879.651.9795.814.1760.410.195
S17HL04-183654130.880.073 00.002 71.253 90.045 30.125 20.002 11 013.075.2825.220.4760.612.291
S17HL04-192175810.370.080 70.002 11.798 40.059 60.160 80.003 91 213.051.81 044.921.6961.121.591
S17HL04-203401751.950.079 70.003 52.212 60.086 20.202 20.005 21 190.787.01 185.027.31 187.327.899
S17HL04-213233770.860.065 20.003 11.143 60.050 00.127 80.002 4783.398.9774.223.7775.413.799
S17HL04-225236440.810.074 70.002 01.313 00.035 40.127 10.002 11 061.157.6851.515.6771.512.290
S17HL04-2372430.030.144 50.003 47.819 80.198 10.388 80.005 82 283.339.72 210.522.82 117.126.995
S17HL04-242863560.800.066 80.002 11.165 60.036 50.125 60.001 9831.566.7784.617.1762.610.797
S17HL04-2592881.040.072 50.003 61.232 50.060 90.123 00.002 9999.1101.9815.527.7747.716.691
S17HL04-271652310.710.067 90.002 01.304 80.036 80.138 20.001 8877.860.0847.916.2834.510.398
S17HL04-28542290.240.067 60.001 51.305 10.029 50.138 60.001 8857.446.3848.013.0836.610.198
S17HL04-302723450.790.065 20.001 81.124 50.031 10.123 40.001 6783.357.4765.114.9750.28.998

Table 3

U-Pb dating results of detrital zircon from siltstone of the Hongliugou section (sample S17HL07)"

测试点含量/10-6Th/U同位素比值年龄/Ma

谐和度

/%

ThU

207Pb/

206Pb

±1σ

207Pb/

235U

±1σ

206Pb/

238U

±1σ

207Pb/

206Pb

±1σ

207Pb/

235U

±1σ

206Pb/

238U

±1σ
S17HL07-169621.120.078 00.005 01.531 30.091 90.143 30.003 71 146.3128.2943.036.9863.520.991
S17HL07-22113490.600.067 50.001 61.327 00.035 40.141 40.001 9853.748.1857.615.5852.610.899
S17HL07-31531640.930.067 60.001 91.396 10.039 50.150 00.002 5855.263.1887.316.7901.114.198
S17HL07-5791490.530.064 80.001 81.267 00.033 20.142 20.001 8768.562.0831.114.9856.810.496
S17HL07-61581910.830.067 10.001 81.414 30.040 70.152 50.002 0838.956.3895.017.1914.811.497
S17HL07-11215972.220.065 00.005 11.123 20.086 80.125 80.004 0775.9166.7764.541.5764.122.899
S17HL07-122323910.590.167 80.003 510.674 60.238 20.457 70.006 62 535.533.82 495.220.72 429.529.397
S17HL07-131711691.010.076 60.003 21.482 80.057 00.141 90.002 31 110.279.5923.423.3855.313.292
S17HL07-141191310.910.071 60.002 81.452 60.050 10.149 30.002 7975.976.9910.920.7897.015.398
S17HL07-161561770.880.073 30.002 91.495 90.056 90.148 00.002 71 033.379.6928.723.2889.615.295
S17HL07-172703290.820.077 20.003 21.459 10.066 50.136 90.002 81 127.883.3913.627.5827.016.190
S17HL07-181391640.850.067 70.003 31.289 10.048 90.142 60.002 8858.9106.5840.921.7859.315.997
S17HL07-201442840.510.107 10.002 44.586 90.103 50.306 60.004 21 750.941.01 746.918.81 724.120.598
S17HL07-211321630.810.075 60.003 91.395 70.060 70.134 80.002 91 087.099.1887.125.7815.116.491
S17HL07-221251450.860.070 80.002 51.433 50.051 60.145 80.002 2950.978.7903.021.5877.412.697
S17HL07-233034650.650.068 50.001 81.224 60.033 30.128 10.001 7883.355.6811.915.2777.09.995
S17HL07-242862331.230.125 50.002 76.480 50.148 50.369 60.005 02 036.137.82 043.320.22 027.623.699
S17HL07-251932420.800.068 00.002 81.202 10.050 20.127 40.002 2877.881.0801.623.1773.012.696
S17HL07-261082810.390.068 80.002 11.482 80.051 40.154 10.002 7894.469.4923.421.0924.115.299
S17HL07-273102241.390.073 40.002 71.302 80.048 90.127 70.002 21 025.074.1847.021.6774.812.491
S17HL07-281111240.900.068 40.003 91.317 90.068 10.141 80.003 8879.6113.9853.629.8854.921.399
S17HL07-29461000.460.091 30.003 43.083 70.106 50.245 20.004 11 453.770.41 428.626.51 413.621.298
S17HL07-303223770.850.066 30.002 21.276 80.044 20.137 60.002 1816.769.3835.419.7831.111.799
S17HL07-311141640.700.126 00.003 26.487 40.167 40.369 70.005 42 042.944.62 044.222.72 028.125.599
S17HL07-322141471.450.067 20.004 61.158 60.073 60.127 20.003 6855.6143.4781.334.6771.720.498
S17HL07-332682491.080.077 30.004 11.476 20.070 70.138 10.002 71 129.3105.6920.729.0833.915.590
S17HL07-35371020.360.086 00.003 22.597 30.098 00.219 10.003 81 338.971.81 299.927.71 277.120.198
S17HL07-363575160.690.063 10.002 01.128 40.035 30.128 30.002 1709.368.5767.016.9778.311.998
S17HL07-37581220.470.087 20.003 03.086 90.096 40.256 90.004 11 364.865.61 429.424.01 473.921.096

Fig.4

Representative cathodoluminescence images and ages of zircons from the Neoproterozoic samples of the Hongliugou section"

Fig. 5

Zircon U-Pb concordia diagram and age spectrum histogram from the Neoproterozoic samples of the Hongliugou section"

Fig. 6

Correlation of the Neoproterozoic ancient source rocks in the periphery of the Tarim Basin"

Fig. 7

Glaciations and types of the ancient source rocks"

Fig. 8

The Neoproterozoic glaciations and development of the ancient source rocks"

1 DICKAS A B. Precambrian as a hydrocarbon exploration target[J]. Geoscience Wisconsin, 1986, 11(9): 5-7.
2 KLEMME H, ULMISHEK G F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors (1) [J]. AAPG Bulletin, 1991,75(12): 1809-1851.
3 CRAIG J, THUROW J, THUSU B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[J]. Geological Society London, Special Publications, 2009, 326(1): 1-25.
4 CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine & Petroleum Geology, 2013, 40(1): 1-47.
5 BHAT G M, CRAIG J, HAFIZ M, et al. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction[J]. Geological Society London, Special Publications, 2012, 366(1): 1-17.
6 赵文智, 胡素云, 汪泽成, 等. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发, 2018, 45(1): 1-13.
ZHAO W Z,HU S Y,WANG Z C,et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13.
7 田雷, 张虎权, 刘军, 等. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化[J]. 石油勘探与开发,2020,47(6): 1122-1133.
TIAN L, ZHANG H Q, LIU J, et al. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin, NW China[J].Petroleum Exploration and Development, 2020, 47(6): 1122-1133.
8 李洪辉, 曹颖辉, 陈志勇, 等. 塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探[J]. 天然气地球科学,2020,31(12): 1677-1686.
LI H H, CAO Y H, CHEN Z Y, et al. The faults and deep petroleum exploration in the Lunnan lower uplift of the Tabei rise, Tarim Basin[J]. Natural Gas Geoscience,2020,31(12): 1677-1686.
9 曹颖辉, 李洪辉, 王珊, 等. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
CAO Y H, LI H H, WANG S, et al. An inquiry into the sedimentary model of Upper Sinian in Tadong Uplift of Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1099-1110.
10 ZHANG S C, WANG X, WANG H, et al. Sufficient oxygen for animal respiration 1400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
11 BLAMEY N J F, BRAND U, PARNELL J, et al. Paradigm shift in determining Neoproterozoic atmospheric oxygen[J]. Geo-logy, 2016, 44(8): 651-654.
12 LOTTAROLI F. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[J]. Geological Socie-ty, Special Publication, 2009, 326(1): 137-156.
13 杜汝霖. 燕山地区震旦亚界及其矿产[J]. 河北地质学院学报,1978(2):5-15.
DU R L. The Sinian subkingdom and its minerals in Yanshan area[J]. Journal of Hebei Institute of Geology,1978(2):5-15.
14 张长根, 熊继辉. 燕山西段震旦亚界油气生成问题探讨[J]. 华东石油学院学报, 1979 (1): 88-102.
ZHANG C G, XIONG J H. Discussion on hydrocarbon generation in the Sinian substrata in the western section of the Yanshan mountains[J]. Journal of Eastern China Petroleum Institute,1979(1):88-102.
15 黄醒汉, 张一伟. 燕山西段震旦亚界、下古生界含油性[J]. 华东石油学院学报, 1979 (1): 103-114.
HUANG X H, ZHANG Y W. Oil-bearing properties of the Sinian and Lower Paleozoic in the western section of the Yanshan mountains[J]. Journal of Eastern China Petroleum Institute, 1979 (1): 103-104.
16 汪泽成, 姜华, 王铜山, 等. 上扬子地区新元古界含油气系统与油气勘探潜力[J]. 天然气工业, 2014, 34(4): 27-36.
WANG Z C, JIANG H, WANG T S, et al. Hydrocarbon systems and exploration potentials of Neoproterozoic in the Upper Yangtze Region[J]. Natural Gas Industry,2014,34(4):27-36.
17 罗志立, 雍自权, 刘树根, 等. 试论“塔里木—扬子古大陆”再造[J]. 地学前缘, 2006, 13(6): 131-138.
LUO Z L, YONG Z Q, LIU S G, et al. Discussion on reconstruction of Tarim-Yangtze paleocontinent[J]. Earth Science Frontiers,2006,13(6):131-138.
18 雍自权, 罗志立, 刘树根, 等. 塔里木—扬子古大陆”的重建对油气勘探的意义[J]. 石油学报,2007,28(5):1-6.
YONG Z Q, LUO Z L, LIU S G, et al. Importance of reconstruction of Tarim-Yangtze paleocontinent model to oil-gas exploration[J]. Acta Petrolei Sinica,2007,28(5):1-6.
19 王洪浩,李江海,杨静懿,等. 塔里木陆块新元古代—早古生代古板块再造及漂移轨迹[J]. 地球科学进展, 2013, 28(6): 637-647.
WANG H H, LI J H, YANG J Y, et al. Paleo-plate reconstruction and drift path of Tarim block from Neoproterozic to Early Palaeozoic[J]. Advances in Earth Science,2013,28(6): 637-647.
20 朱光有, 杜德道, 陈玮岩, 等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报,2017,38(12): 1335-1342, 1370.
ZHU G Y, DU D D, CHEN W Y, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J].Acta Petrolei Sinica,2017,38(12):1335-1342,1370.
21 孙枢, 王铁冠. 中国东部中—新元古界地质学与油气资源[M]. 北京: 科学技术出版社, 2016: 1-565.
SUN S, WANG T G. Meso-Neoproterozoic Geology and Petroleum Resources in the Eastern China[M]. Beijing: Science and Technology Press,2016:1-565.
22 李王鹏, 王毅, 李慧莉, 等. 塔里木地块西北缘阿克苏地区新元古代冰碛岩年代与冰期事件[J]. 现代地质,2022,36(1):27-47.
LI W P, WANG Y, LI H L, et al. Geochronology and glaciations of the Neoproterozoic diamictite in Aksu area, northwest margin of the Tarim block[J]. Geoscience,2022,36(1):27-47.
23 SLAMA J, KOSLER J, CONDON D J. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35.
24 JACKSON S E, PERSON N J, GRIFFIN W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1-2): 37-69.
25 ANDERSEN T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79.
26 LUDWIG K R. Isoplot 3.0: A Geochronological Tool Kit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, Special Publication, 2003: 1-70.
27 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 12-15.
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 1993: 12-15.
28 王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007, 26(8): 929-937.
WANG G C, WEI Q R, JIA C X, et al. Some ideas of Precambrian geology in the East Kunlun,China[J]. Geological Bu-lletin of China, 2007, 26(8): 929-937.
29 王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP 年龄及其构造意义[J]. 地学前缘, 2004, 11(4): 481-490.
WANG G C, WANG Q H, JIAN P, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province,China[J]. Earth Science Frontiers,2004,11(4):481-490.
30 邵志兵, 储呈林, 高晓鹏, 等. 塔里木盆地新元古界—寒武系沉积特征与源储条件[R]. 北京: 中国石油化工股份有限公司石油勘探开发研究院, 2020: 11-30.
SHAO Z B,CHU C L,GAO X P, et al. Sedimentary Characteristics and Hydrocarbon Source Rocks-reservoir Conditions of the Neoproterozoic and Cambrian in the Tarim Basin[R]. Bei-jing: Petroleum Exploration anal Production Research Institute of SINOPEC, 2020: 11-30.
31 杜金虎, 潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 2016, 43(3): 327-339.
DU J H, PAN W Q. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J].Petroleum Exploration and Development,2016, 43(3): 327-339.
32 秦胜飞, 罗平, 王铜山, 等. 华北南缘东部新元古界冰碛砾岩层系中优质烃源岩的发现及地质意义[J]. 天然气地球科学, 2018, 29(1): 55-61.
QIN S F, LUO P, WANG T S, et al. Discovery and geological significance of high quality hydrocarbon source rocks in interglacial of Neoproterozoic in the eastern part of southern margin of North China[J]. Natural Gas Geoscience,2018,29(1): 55-61.
33 童勤龙, 卫魏, 徐备. 塔里木板块西南缘新元古代沉积相和冰期划分[J]. 中国科学: 地球科学, 2013, 43(5): 703-715.
TONG Q L, WEI W, XU B. Neoproterozoic sedimentary facies and glacial periods in the southwest of Tarim block[J]. Science China: Earth Sciences, 2013, 43(5): 703-715.
34 丁海峰, 马东升, 姚春彦, 等. 新疆阿克苏地区新元古代冰成沉积地球化学研究[J]. 地球化学, 2014, 43(7): 224-237.
DING H F, MA D S, YAO C Y, et al. A geochemistry study on Neoproterozoic glaciogenic sediments in Aksu area, Xinjiang[J]. Geochimica, 2014, 43(7): 224-237.
35 XU B, JIAN P, ZHENG H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of Northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J]. Precambrian Research, 2005, 136(2): 107-123.
36 XU B,XIAO S H,ZHOU H B,et al.SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research,2009,168(3-4):247-258.
37 徐备, 寇晓威, 宋彪, 等. 塔里木板块上元古界火山岩SHRIMP定年及其对新元古代冰期时代的制约[J]. 岩石学报, 2008, 24(12): 2857-2862.
XU B, KOU X W, SONG B, et al. SHRIMP dating of the Upper Proterozoic volcanic rocks in the Tarim plate and constraints on the Neoproterozoic glaciation[J]. Acta Petrologica Sinica, 2008, 24(12): 2857-2862.
38 何景文. 塔里木克拉通北缘与伊犁块体新元古代冰碛岩地层对比研究[D]. 南京: 南京大学, 2015: 1-257.
HE J W. The Comparison Study of Neoproterozoic Diamictites-bearmg Strata in the Northern Tarim Craton and the Yili Block[D]. Nanjing: Nanjing University, 2015: 1-257.
39 罗志文, 徐备, 何金有. 新疆库鲁克塔格地区特瑞艾肯冰期时代的碎屑锆石年代学制约[J]. 北京大学学报(自然科学版), 2016, 52(3): 467-474.
LUO Z W, XU B, HE J Y. U-Pb Detrital zircon age constraints on the Neoproterozoic Tereeken Glaciation in the Quruqtagh area,Northwestern China[J]. Acta Scientiarum Na-turalium Universitatis Pekinensis, 2016, 52(3): 467-474.
40 XU B, ZOU H B, CHEN Y, et al. The Sugetbrak basalts from northwestern Tarim block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236(5): 214-226.
41 丁海峰. 新疆北部新元古代冰期沉积的地球化学和碎屑锆石年代学研究[D]. 南京: 南京大学, 2012: 1-164.
DING H F. The Research of Geochemistry and U-Pb Detrital Zircon Geochronology of Neoprotierozoic Glaciogenic Sedimerits in Northern Xinjiang,NW China[D]. Nanjing:Nanjing Uni-versity, 2012: 1-164.
42 WEN B,EVANS D A D,LI Y X,et al.Newly discovered Neo-proterozoic diamictite and cap carbonate(DCC) couplet in Tarim Craton,NW China:Stratigraphy,geochemistry,and paleoenvironment[J].Precambrian Research,2015,271:278-294.
43 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565.
ZHAO Y Y,ZHENG Y F. Record and time of Neoproterozoic glaciation on Earth[J]. Acta Petrologica Sinica,2011,27(2): 545-565.
44 何景文. 塔里木库鲁克塔格地区新元古代冰期和前寒武纪地壳演化的初步探讨[D]. 南京: 南京大学, 2012: 1-103.
HE J W. The Preliminary Discussion on the Era of Neoproterozoic Glaciations in Quruqtagh and the Precambrian Crustal Evolution of the Tarim Craton[D]. Nanjing: Nanjing University, 2012: 1-103.
45 寇晓威, 王宇, 卫巍, 等. 塔里木板块上元古界阿勒通沟组和黄羊沟组: 新识别的冰期和间冰期?[J]. 岩石学报, 2008, 24(12): 2863-2868.
KOU X W, WANG Y, WEI W, et al. The Neoproterozoic Altungol and Huangyanggou formations in Tarim plate: Recognized newly glaciation and interglaciation?[J]. Acta Petrologica Sinica, 2008, 24(12): 2863-2868.
46 XIAO S H,BAO H M,WANG H F, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciations[J]. Precambrian Research,2004,130(1):1-26.
47 KENDALL B, CREASER R A, SELBY D. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9): 729-732.
48 张启锐, 储雪蕾, 冯连君. 关于华南板块新元古代冰川作用及其古纬度的讨论[J]. 科学通报, 2009, 54(7): 978-980.
ZHANG Q R, CHU X L, FENG L J. Discussion on the Neoproterozoic glaciations in the South China block and their related paleolatitudes[J]. Chinese Science Bulletin, 2009, 54(7): 978-980.
49 朱光有, 闫慧慧, 陈玮岩, 等. 塔里木盆地东部南华系—寒武系黑色岩系地球化学特征及形成与分布[J]. 岩石学报, 2020, 36(11): 3442-3462.
ZHU G Y, YAN H H, CHEN W Y, et al. Geochemical characteristics, formation and distribution of the Nanhua Cambrian black rockseries in the eastern Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3442-3462.
50 闫磊, 杨敏, 张君龙, 等. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J]. 天然气地球科学, 2020, 31(5): 667-674.
YAN L, YANG M, ZHANG J L, et al. Distribution of Cambrian source rocks and evaluation and optimization of favorable zones in East Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 667-674.
51 易士威, 李明鹏, 郭绪杰, 等. 塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J]. 石油学报, 2020, 41(11): 1293-1308.
YI S W, LI M P, GUO X J, et al. Control of the Nanhua paleo-rift on Cambrian sedimentation and its exploration significance in Tarim Basin[J]. Acta Petrolei Sinica, 2020, 41(11): 1293-1308.
52 闫磊, 朱光有, 陈永权, 等. 塔里木盆地下寒武统烃源岩分布[J]. 天然气地球科学, 2019, 30(11): 1569-1578.
YAN L, ZHU G Y, CHEN Y Q, et al. Distribution of Lower Cambrian source rocks in the Tarim Basin[J].Natural Gas Geo-science, 2019, 30(11): 1569-1578.
53 赵文智, 王晓梅, 胡素云, 等. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科学: 地球科学, 2019, 49(6): 939-964.
ZHAO W Z, WANG X M, HU S Y, et al. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China[J]. Science China Earth Sciences,2019,49(6): 939-964.
54 李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67.
LI J Z, TAO X W, BAI B, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52-67.
55 吴林, 管树巍, 任荣, 等. 前寒武纪沉积盆地发育特征与深层烃源岩分布——以塔里木新元古代盆地与下寒武统烃源岩为例[J]. 石油勘探与开发, 2016, 43(6): 905-915.
WU L, GUAN S W, REN R, et al. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China[J]. Petroleum Exploration and Development, 2016, 43(6): 905-915.
56 吴林, 管树巍, 冯兴强, 等. 塔里木盆地及周缘南华系和震旦系划分对比研究[J]. 岩石学报, 2020, 36(11): 3427-3441.
WU L, GUAN S W, FENG X Q, et al. Discussion on stratigraphic division of the Nanhuan and Sinian of the Tarim Basin and its surrounding regions[J]. Acta Petrologica Sinica, 2020, 36(11): 3427-3441.
57 石开波, 刘波, 姜伟民, 等. 塔里木盆地南华纪—震旦纪构造——沉积格局[J]. 石油与天然气地质, 2018, 39(5): 862-877.
SHI K B, LIU B, JIANG W M, et al. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 2018, 39(5): 862-877.
58 何金有,邬光辉,徐备,等.塔里木盆地震旦系—寒武系不整合面特征及油气勘探意义[J]. 地质科学, 2010, 45(3): 698-706.
HE J Y, WU G H, XU B, et al. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin[J]. Chinese Journal of Geology, 2010, 45(3): 698-706.
59 李朋威, 罗平, 宋金民, 等. 微生物碳酸盐岩储层特征与主控因素——以塔里木盆地西北缘上震旦统—下寒武统为例[J]. 石油学报, 2015, 36(9): 1074-1089.
LI P W, LUO P, SONG J M, et al. Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian-Lower Cambrian in the northwestern marign of Tarim Basin[J]. Acta Petrolei Sinica,2015,36(9): 1074-1089.
60 王珊,曹颖辉,张亚金,等. 塔里木盆地古城地区上寒武统碳酸盐岩储层发育特征及主控因素[J]. 天然气地球科学,2020, 31(10): 1389-1403.
WANG S, CAO Y H, ZHANG Y J, et al. Characteristics and main controlling factors of Upper Cambrian carbonate reservoir in Gucheng area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(10): 1389-1403.
61 曹自成, 尤东华, 漆立新, 等. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
CAO Z C, YOU D H, QI L X, et al. New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis[J]. Natural Gas Geoscience, 2020, 31(7): 915-922.
62 黄智斌, 王振华, 杨芝林, 等. 库鲁克塔格地区石油地质综合研究[R]. 库尔勒: 塔里木油田公司勘探开发研究院, 2009: 1-545.
HUANG Z B, WANG Z H, YANG Z L, et al. A Comprehensive Study of Petroleum Geology in Kuruktag Area[R]. Korla: Exploration and Development Research Institute of Tarim Oilfield Company, 2009: 1-545.
[1] Lei YAN, Guoqi WEI, Guangyou ZHU, Yongquan CHEN, Caiming LUO, Min YANG, Shan WANG, Dedao DU. Exploration field analysis and zone optimization of Sinian, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(4): 548-555.
[2] Yongjin ZHU, Jianfeng ZHENG, Lingli LIU, Guang FENG, Feng WU, Lei YAN, Tianfu ZHANG. Lithofacies paleogeography and exploration significance of Lower Cambrian Wusonger Formation depositional stage, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2022, 33(1): 1-12.
[3] Min YANG, Peng YU, Guangyou ZHU, Luolei ZHANG, Lei YAN, Chongjin ZHAO, Debo MA, Zhiyong CHEN. Gravity-magnetic-magnetotelluric joint inversion method coupled with seismic constraint information and its application: Case study of the analysis of deep geological structure in Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(1): 168-180.
[4] Yu LIU, Jianfeng ZHENG, Jianhui ZENG, Yongjing ZHU. Micro-characterization of microbial dolomite reservoir of Upper Sinian Qigeblak Formation in Keping area, Tarim Basin [J]. Natural Gas Geoscience, 2022, 33(1): 49-62.
[5] Jin LI, Jian LI, Chao WANG, Dejiang LI, Zhongxi HAN, Haizu ZHANG, Hui ZHOU, Yuhong LU, Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[6] An-lai MA, Zhi-liang HE, Lu YUN, Xian WU, Hui-li LI, Nan-sheng QIU, Jian CHANG, Hui-xi LIN, Zi-cheng CAO, Xiu-xiang ZHU, Dong-hua YOU. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China [J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060.
[7] An-lai MA, Hui-xi LIN, Lu YUN, Zi-cheng CAO, Xiu-xiang ZHU, Wang-peng LI, Xian WU. Characteristics of diamondoids in oils from the ultra-deep Ordovician in the North Shuntuoguole area in Tarim Basin, NW China [J]. Natural Gas Geoscience, 2021, 32(3): 334-346.
[8] Guang-you ZHU, Huai-shun ZHANG, Shun-lin TANG, Guang-yi SUN, Yu-xiang DING. Characteristics of mercury isotopic composition of marine crude oil in Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(3): 347-355.
[9] Yongke HAN, Zhiyao ZHANG, Weiyan CHEN, Jianfa HAN, Chonghao SUN. Geological conditions and evolution for the accumulation of the ultra-deep oil pools in the Yueman area, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(11): 1634-1645.
[10] Chun LIU, Shijia CHEN, Jilong ZHAO, Ge CHEN, Qiao GAO. Hydrocarbon transportation system and accumulation simulation of Mesozoic-Cenozoic in south slope of Kuqa foreland basin [J]. Natural Gas Geoscience, 2021, 32(10): 1450-1462.
[11] Ying-hui CAO, Hong-hui LI, Shan WANG, Jing-shun QI, Jin-you HE, Hong-jiang WANG. An inquiry into the sedimentary model of Upper Sinian in Tadong Uplift of Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1099-1110.
[12] Hui-li LI, Dong-hua YOU, Jun HAN, Yi-xiong QIAN, Xu-guang SHA, Bin-bin XI. The fluid origin of calcite veins in Shunnan-Gucheng area of Tarim Basin and its implications for hydrocarbon accumulation [J]. Natural Gas Geoscience, 2020, 31(8): 1111-1125.
[13] Zi-cheng CAO, Dong-hua YOU, Li-xin QI, Lu YUN, Wen-xuan HU, Zong-jie LI, Yi-xiong QIAN, Yong-li LIU. New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis [J]. Natural Gas Geoscience, 2020, 31(7): 915-922.
[14] Guang-you ZHU, Chong-hao SUN, Bin ZHAO, Ting-ting LI, Zhi-yong CHEN, Hai-jun YANG, Lian-hua GAO, Jin-hua HUANG. Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7 000 m [J]. Natural Gas Geoscience, 2020, 31(5): 587-601.
[15] Ze-yu WANG, Zhan-feng QIAO, Fang-yi SHOU, Shao-xing MENG, Xue-ju LÜ. Origin and formation mechanism of dolomite in Penglaiba Formation of Yonganba outcrop, Tarim Basin: Evidence from ordering degree and unit cell parameters [J]. Natural Gas Geoscience, 2020, 31(5): 602-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[3] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[4] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[5] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[6] MA Lixiang . CONCEPT AND STUDING STATUS OF PETROPHYSICAL FLOW UNIT IN PETROLEUM EXPLORATION AND DEVELOPMENT[J]. Natural Gas Geoscience, 2000, 11(2): 30 -36 .
[7] . [J]. Natural Gas Geoscience, 0, (): 9 .
[8] DU Le-tian. THE FIVE GAS SPHERES OF THE EARTH AND NATURAL GAS EXPLOITATION FROM MIDDLE CRUST[J]. Natural Gas Geoscience, 2006, 17(1): 25 -30 .
[9] NI Jin-long, XIA Bin. GROUPING TYPES OF SLOPE-BREAK IN JIYANG DEPRESSION[J]. Natural Gas Geoscience, 2006, 17(1): 64 -68 .
[10] LI Zai-guang;YANG Zhan-long;LI Lin; GUO Jing-yi;HUANG Yun-feng;WU Qing-peng;LI Hong-zhe. HYDROCARBON DISTRIBUTION OF SHENGLI AREA[J]. Natural Gas Geoscience, 2006, 17(1): 94 -96 .