Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (12): 1880-1888.doi: 10.11764/j.issn.1672-1926.2021.11.002

Previous Articles    

Dominating factors on shale oil horizontal well productivity and development strategies optimization in Qingcheng Oilfield, Ordos Basin

Ting XUE1,2(),Tianjing HUANG1,2,Liangbing CHENG1,2,Shuwei MA1,2(),Jianchao SHI1,2   

  1. 1.National Engineering Laboratory for Exploration and Development of Low Permeability Oil & Gas Fields,Xi’an 710018,China
    2.Exploration and Development Research Institute of PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2021-05-15 Revised:2021-11-05 Online:2021-12-10 Published:2021-12-27
  • Contact: Shuwei MA E-mail:xt519_cq@petrochina.com.cn;masw_cq@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05069)

Abstract:

Previous development practices in Chang 7 Member shale oil reservoir have proved that individual well production in Qingcheng Oilfield is related to several factors in both geology and engineering, such as physical properties of a reservoir, lateral length, fracturing scale etc. However, the most decisive factors among those are not clear. This paper is outlined to study the dominating factors relating to individual well production, based on geological parameters, fracturing construction data, and production data. Productivity influencing factors are quantitatively ordered using gray correlation analysis method and random forest algorithm. Research shows that the most decisive factors affecting individual well production of a horizontal well are porosity, oil saturation, brittleness index, effective lateral length, number of fracturing sections, sand volume pumped into a single fracturing section, and the amount of fracturing fluid pumped underground. Thus, well displacement, lateral length and fracturing parameters are optimized. This study provides a guidance to the development of shale oil reservoir considering low oil prices nowadays.

Key words: Shale oil, Horizontal well, Main controlling factors of productivity, Optimize the technical countermeasures

CLC Number: 

  • TE34

Fig.1

Early production distribution histogram in Qingcheng Oilfield"

Fig.3

Oil layer thickness vs. cumulative oil production of the first year"

Fig.4

Reservoir property vs. cumulative oil production of the first year"

Fig.5

Reservoir oiliness vs. cumulative oil production of the first year"

Fig.6

Relationship between brittleness index and daily oil production"

Fig.7

Effective length of lateral section vs. cumulative oil production of the first year"

Fig.8

Fracturing parameters per hundred meter vs. cumulative oil production of the first year"

Fig.9

Parameter order using grey correlation method"

Fig.10

Parameter order using random forest algorithm"

Table 1

Weight coefficient of each parameter using sweet spot index"

地质参数影响因子均一化系数权重系数
孔隙度0.100 70.275 2ω1
含油饱和度0.097 40.266 2ω2
脆性指数0.078 20.213 7ω3

Fig.11

Dessert index and daily production during initial production period"

Fig.12

Lateral length vs. daily production during initial production period per hundred meters"

Fig.13

Daily production during initial production period per hundred meter vs. number of fracturing section in oil layer per hundred meters"

Fig.14

Fracturing simulation results under the conditions of different number of clusters in same well section"

Fig.15

Fracturing volume of each section with different fluid inlet strength"

Fig.16

Fracture diverting capacity with different sand adding strength"

1 付金华,牛小兵,淡卫东,等.鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J].中国石油勘探,2019,24(5):1-10.
FU J H,NIU X B,DAN W D,et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019,24(5):1-10.
2 高岗,刘显阳,王银会,等.鄂尔多斯盆地陇东地区长7段页岩油特征与资源潜力[J].地学前缘,2013,20(2):140-146.
GAO G, LIU X Y, WANG Y H ,et al. Characteristics and resource potential of the oil shale of Chang 7 Layer in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2013,20(2):140-146.
3 李国欣,吴志宇,李桢,等.陆相源内非常规石油甜点优选与水平井立体开发技术实践——以鄂尔多斯盆地延长组7段为例[J].石油学报,2021,42(6):1-10.
LI G X,WU Z Y,LI Z,et al.Optimal selection of unconventional petroleum sweet spots inside continental sourse kitchens and actual application of three-dimensional development technology in horizontal wells: A case study of the Member 7 of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica,2021,42(6):1-10.
4 LUO G F , TIAN Y , BYCHINA M , et al. Production-strategy insights using machine learning: Application for Bakken shale[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3):800-816.
5 梁涛,常毓文,郭晓飞,等.巴肯致密油藏单井产能参数影响程度排序[J]. 石油勘探与开发, 2013, 40(3):357-362.
LIANG T, CHANG Y W, GUO X F, et al. Influence factors of single well’s productivity in the Bakken tight oil reservoir[J]. Petroleum Exploration and Development, 2013, 40(3):357-362.
6 黄世军,丁冠阳,薛永超,等.致密油藏压裂水平井非稳态产能评价方法研究[J]. 中国科技论文, 2017, 12(9):1006-1010.
HUANG S J, DING G Y, XUE Y C, et al. Unsteady deliverability evaluation method of fractured horizontal wells in tight oil reservoirs[J]. China Science Paper,2017,12(9):1006-1010.
7 彭晖,刘玉章,冉启全,等. 致密油储层水平井产能影响因素研究[J].天然气地球科学, 2014, 25(5):771-777.
PENG H, LIU Y Z, RAN Q Q, et al. Study on the horizontal well production in tight oil reservoirs[J].Natural Gas Geoscience, 2014, 25(5):771-777.
8 孙兵,刘立峰,丁江辉. 致密油水平井产能主控地质因素研究[J]. 特种油气藏, 2017, 24(2):115-119.
SUN B, LIU L F, DING J H, et al. Main geologic factors controlling the productivity of horizontal wells in tight oil reservoirs[J].Special Oil and Gas Reservoirs,2017,24(2):115-119.
9 詹路锋,郭彬程,蔚远江,等. 基于深度学习方法的致密油产量主控因素分析[C]//CPS/SEG北京2018国际地球物理会议暨展览电子论文集,2018.
ZHAN L F,GUO B C, WEI Y J, et al. Dominating factors analysis of tight oil production based on the deep learning method[C]// CPS/SEG 2018 Beijing International Geophysical Meeting and Exhibition Electronic Proceedings,2018.
10 杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.
YANG H, LI S X,LIU X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J].Acta Petrolei Sinica, 2013,34(1):1-11.
11 付金华,喻建,徐黎明,等. 鄂尔多斯盆地致密油勘探开发进展及规模富集可开发主控因素[J].中国石油勘探,2015,20(5):9-19.
FU J H, YU J, XU L M, et al . New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity[J]. Chnia Petroleum Exploration, 2015,20(5):9-19.
12 李卫成,叶博,张艳梅,等.致密油水平井体积压裂攻关试验区单井产量主控因素分析[J].石油地质与工程,2016,30(6):111-114.
LI W C, YE B, ZHANG Y M, et al . Main factors controlling the productivity of the volume-fracturing horizontal wells in tight oil research area[J]. Petroleum Geology and Engineering,2016,30(6):111-114.
13 李忠兴,李健,屈雪峰,等.鄂尔多斯盆地长7致密油开发试验及认识[J].天然气地球科学,2015,26(10): 1932-1939.
LI Z X, LI J, QU X F, et al. The experiment and recognition of the development of Chang 7 tight oil in Ordos Basin[J].Natural Gas Geoscience,2015,26(10): 1932-1939.
14 李忠兴,屈雪峰,刘万涛,等.鄂尔多斯盆地长7 段致密油合理开发方式探讨[J].石油勘探与开发,2015,42(2):217-221.
LI Z X,QU X F, LIU W T, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin,NW China[J].Petroleum Exploration and Development,2015,42(2):217-221.
15 赵继勇,樊建明,薛婷,等.鄂尔多斯盆地长7致密油储渗特征及分类评价研究[J].西北大学学报(自然科学版),2018,48(6):857-866.
ZHAO J Y, FAN J M, XUE T, et al. Classification and evaluation of Chang 7 tight oil reservoir seepage features in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2018,48(6):857-866.
16 王冲,屈雪峰,王永康,等. 鄂尔多斯盆地致密油体积压裂水平井产量预测[J].西南石油大学学报(自然科学版),2018,40(4):123-131.
WANG C, QU X F, WANG Y K, et al. Production prediction for the volume-fracturing horizontal wells of a tight oil reservior in the Ordos Basin[J].Journal of Southwest Petroleum University(Science & Technology Edition),2018,40(4):123-131.
17 樊建明,杨子清,李卫兵,等.鄂尔多斯盆地长7 致密油水平井体积压裂开发效果评价及认识[J].中国石油大学学报(自然科学版),2015,39(4):103-110.
FAN J M, YANG Z Q, LI W B, et al. Assessment of fracturing treatment of horizontal wells using SRV technique for Chang 7 tight oil reservoir in Ordos Basin[J]. Journal of China University of Petroleum,2015,39(4):103-110.
18 孙敬,刘德华,张亮,等.低渗透油藏递减影响因素的灰色关联分析[J].特种油气藏,2012,19(2):90-93.
SUN J, LIU D H,ZHANG L, et al. The influence factor of diminishing of low permeability reservoirs based on the gray correlation analysis[J]. Special Oil and Gas Reservoirs,2012,19(2):90-93.
19 纪磊,李菊花,肖佳林.随机森林算法在页岩气田多段压裂改造中的应用[J].大庆石油地质与开发,2020,39(6): 168-174.
JI L, LI J H, XIAO J L. Application of random forest algorithm in the multistage fracturing stimulation of shale gas field[J]. Petroleum Geology & Oilfield Development in Daqing,2020,39(6): 168-174.
[1] Wanchun WANG, Liming JI, Dongjun SONG, Dongwei ZHANG, Chengfu LÜ, Long SU. Residual oil from pyrolysis experiments of different sandstone/oil shale ratios and its geological significance: Case study of the Upper Triassic Chang 7 Member of the Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1142-1150.
[2] Ya-hui LIU, Cai-zhi WANG, Zhong-hua LIU, Hao WANG, Ying-ming LIU. A logging method for evaluating oil-bearing property of Jimsar shale oil: Case study of Sag in Junggar Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1084-1092.
[3] Jing-yuan CHEN, Yun-sheng WEI, Jun-lei WANG, Wei YU, Ya-dong QI, Jian-fa WU, Wan-jing LUO. Interwell-production interference and well spacing optimization in shale gas reservoir [J]. Natural Gas Geoscience, 2021, 32(7): 931-940.
[4] Fang-zheng JIAO. Theoretical technologies and practices concerning “volume development” of low pressure continental shale oil: Case study of shale oil in Chang 7 member, Ordos Basin, China [J]. Natural Gas Geoscience, 2021, 32(6): 836-844.
[5] Hua WANG, Yue-hua CUI, Xue-ling LIU, Zhen-zhen QIANG, Shi-cheng WANG. Multi-layer horizontal wells development for tight sandstone gas reservoir: Case study of tight gas reservoir model zone in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(4): 472-480.
[6] Zhi-guo SHU, Li LIU, Bang LIANG, Ya-qiu LU, Ai-wei ZHENG, Han-yong BAO. Study on productivity evaluation method of shale gas well based on material balance principle [J]. Natural Gas Geoscience, 2021, 32(2): 262-267.
[7] Jinhua FU, Wen GUO, Shixiang LI, Xianyang LIU, Dangxing CHENG, Xinping ZHOU. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1749-1761.
[8] Xianyang LIU, Weiwei YANG, Shixiang LI, Lin SUN, Rui CHANG. Occurrence states and quantitative characterization of lacustrine shale oil from Yanchang Formation in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1762-1770.
[9] Shixiang LI, Xinping ZHOU, Qiheng GUO, Jianping LIU, Jiangyan LIU, Shutong LI, Bo WANG, Qiqi LÜ. Research on evaluation method of movable hydrocarbon resources of shale oil in the Chang 73 sub-member in the Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1771-1784.
[10] Shutong LI, Shixiang LI, Jiangyan LIU, Mingyi YANG, Junlin CHEN, Shan ZHANG, Deyi CUI, Jiacheng LI. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1785-1796.
[11] Liming XU, Qiheng GUO, Yuanbo LIU, Jiangyan LIU, Xinping ZHOU, Shixiang LI. Characteristics and controlling factors of deep-water gravity flow sandstone reservoir in the Chang 73 sub-member in Ordos Basin: Case study of Well CY1 in Huachi area [J]. Natural Gas Geoscience, 2021, 32(12): 1797-1809.
[12] Wenzhong MA, Yonghong WANG, San ZHANG, Shengbin FENG, Bingying HAO, Xiaoli CUI. Microscopic characteristics and controlling factors of Chang 7 Member shale oil reservoir in northern Shaanxi area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1810-1821.
[13] Yanli MA, Honggang XIN, Wenzhong MA, Zhenhua MAO, Shuxun ZHOU, Weidong DAN. The main controlling factors on the enrichment and sweet-spot area prediction of Chang 7 Member shale oil in northern Shaanxi area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1822-1829.
[14] Jihong LI, Jingtao HOU, Yanning YANG, Xiankui XIE, Chengshan LI, Guanglin LIU, Shutong LI. Geochemical characteristics and geological significance of Chang 73 sub-member mud shale in Zhidan area, Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1839-1848.
[15] Ziyun ZHANG, Lianhua HOU, Xia LUO, Kun HE, Yan ZHANG. Hydrocarbon generation kinetics and in-situ conversion temperature conditions of Chang 7 Member shale in Ordos Basin [J]. Natural Gas Geoscience, 2021, 32(12): 1849-1858.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Guang-zhi, HU Bin, DENG Tian-long,YUAN Zi-yan . Petroleum Geological Significance of Microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13 -17 .
[2] ZHANG Rong-hu ;ZHANG Hui-liang ;MA Yu-jie ;SHEN Yang ;LI Chang ;ZHANG Li-juan . Origin of Extra Low Porosity and Permeability High Production Reseroirs: A Case from Bashijiqike Reservoir of Dabei 1 Oil Field, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1): 75 -82 .
[3] WEI Li-hua, GUO Jing-yi, YANG Zhan-long, HUANG Yun-feng. ANALYSIS ON KEY TECHNIQUES OF LOG CONSTRAINEDLITHOLOGICAL INVERSION[J]. Natural Gas Geoscience, 2006, 17(5): 731 -735 .
[4] YANG Jian-ping,XIAO Xiang-jiao,ZHANG Feng,WANG Hai-yin. APPLICABILITY ESTIMATION OF FOUR METHODS OF CALCULATING THE DEVIATION FACTOR OF NATURAL GAS[J]. Natural Gas Geoscience, 2007, 18(1): 154 -157 .
[5] . STUDY ON PRODUCING ABILITY OF RESERVOIRS AND INFLUENCE FACTORS IN HETEROGENEOUS[J]. Natural Gas Geoscience, 2005, 16(1): 93 -97 .
[6] . THE STUDY OF GEOLOGY COURSE AND EXPERIMENT SIMULATION FORFORMING ULTRA-LOW WATER SATURATION IN TIGHTSANDSTONES GAS RESERVOIRS[J]. Natural Gas Geoscience, 2005, 16(2): 186 -189 .
[7] . PROSPECT ANALYSIS OF COALBED GAS EXPLORATION ON CANGXIAN UPLIFT IN DAGANG FIELDS[J]. Natural Gas Geoscience, 2003, 14(4): 323 -326 .
[8] ZHAO Jing-zhou. ON EPISODIC MIGRATION AND ACCUMULATION OF HYDROCARBON[J]. Natural Gas Geoscience, 2005, 16(4): 469 -476 .
[9] . PREDICTION OF DEEP COALBED METHANE CONTENTS IN HUIMIN DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(6): 764 -767 .
[10] MU Ya-peng,; WANG Wan-chun ;SONG Zhen- xiang,. Present Researches and Prospects of the Evaluation Indicator of Biogenic Gas Source Rocks[J]. Natural Gas Geoscience, 2008, 19(06): 775 -779 .