Natural Gas Geoscience ›› 2022, Vol. 33 ›› Issue (3): 431-440.doi: 10.11764/j.issn.1672-1926.2021.10.005

Previous Articles     Next Articles

Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou

Pengwei WANG1(),Guangxiang LIU1,Zhongbao LIU1,Xiao CHEN2,Peng LI1,Beibei CAI3   

  1. 1.Research Institute of Petroleum Exploration & Production,SINOPEC,Beijing 100083,China
    2.CNOOC International Limited,Beijing 100027,China
    3.China University of Geosciences (Beijing),Beijing 100083,China
  • Received:2021-08-24 Revised:2021-10-03 Online:2022-03-10 Published:2022-03-22
  • Supported by:
    The National Natural Science Foundation of China(91755211)

Abstract:

Focusing on shale gas enrichment conditions of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou, this paper primarily discusses source rock quality, reservoir conditions and gas content by using measurements, e.g., organic petrology, kerogen carbon isotope, X-ray diffractometer (XRD) and field emission scanning electron microscopy (FE-SEM). Results show that the Longtan shale in Southeast Sichuan to Northwest Guizhou is characterized by high organic matter abundance (average TOC value is 3.50%) and high thermal maturity (average RO value is 2.23%). The organic macerals are dominated by vitrinite, followed by inertinite, indicating type III kerogen. It is a set of high-quality gas source rocks. The shale reservoir has high physical properties with average porosity of 5.56%, the reservoir is dominated by clay mineral pores, where mesoporous and micropores among I/S mixed layers are well developed. Organic macerals are main controlling factors on the organic pore development in Longtan high to over-high organic-rich shale. Shale varies greatly in adsorbed gas content and total gas content, and the organic matter abundance is an important factor controlling adsorption capacity and gas content.

Key words: Shale gas, Source rock quality, Shale reservoir, Gas content, Primary controllers, Upper Permian, Longtan Formation, Southeast Sichuan to Northwest Guizhou

CLC Number: 

  • TE122

Fig.1

Sedimentary facies[12](a)and stratigraphic column(b) of Upper Permian Longtan Formation Southeast Sichuan to Northwest Guizhou area"

Fig.2

Bulk mineral composition(a) and clay mineral composition(b) of Longtan Formation shale in Northwest Guizhou"

Fig.3

Histograms of measured TOC (a) and RO (b) of Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.4

TOC and RO distributions of Upper Permian Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.5

Macerals of Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.6

Comparison of carbon isotopes of kerogen from different formation shales"

Fig.7

Histogram of porosity (a) and pore size distribution (b) of Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.8

Pore types of Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.9

SEM images of organic matter from Longtan Formation shale in Southeast Sichuan to Northwest Guizhou"

Fig.10

Relationship between clay minerals (a), TOC (b) and porosity of Longtan Formation shale"

Fig.11

Isothermal adsorption curves of Longtan Formation shale samples"

Fig.12

Relationship between TOC(a) clay mineral content and total gas content(b) of Longtan Formation shale"

1 郭旭升, 胡东风, 刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10):17-24.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):17-24.
2 邹才能, 赵群, 丛连铸,等. 中国页岩气开发进展,潜力及前景[J]. 天然气工业, 2021,41(1):1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
3 董大忠, 邱振, 张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45.
4 匡立春, 董大忠, 何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3) :5-16.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3):5-16.
5 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35.
NIE H K, HE Z L, LIU G X, et al. Status and direction of shale gas exploration and development in China[J]. China University of Mining and Technology, 2020, 49(1): 13-35.
6 何治亮, 聂海宽, 李双建,等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J].石油与天然气地质, 2021, 42(1): 1-15.
HE Z L, NIE H K, LI S J, et al. Differential occurence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15.
7 何燚,唐玄,单衍胜,等. 四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J]. 天然气地球科学, 2021, 32(2): 174-190.
HE Y,TANG X,SHAN Y S,et al. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding[J]. Natural Gas Geoscience, 2021, 32(2): 174-190.
8 曹涛涛, 曹清古, 刘虎, 等. 川东地区海陆过渡相泥页岩地球化学特征及吸附性能[J]. 煤炭学报,2020,45(4):1445-1456.
CAO T T, CAO Q G, LIU H, et al. Geochemical characteristics and adsorption capacity of marine-continental transitional mudrock in eastern Sichuan Basin[J]. Journal of China Coal Society, 2020, 45(4): 1445-1456.
9 翟刚毅, 王玉芳, 刘国恒,等. 中国二叠系海陆交互相页岩气富集成藏特征及前景分析[J]. 沉积与特提斯地质, 2020, 40(3): 102-117.
ZHAI G Y, WANG Y F, LIU G H, et al. Enrichment and accumulation characteristics and prospect analysis of the Permian marine conticental multiphase shale gas in China[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(3):102-117.
10 冯庆来, 刘本培,叶玫. 中国南方古特提斯阶段的构造古地理格局[J]. 地质科技情报, 1996, 15(3):1-6.
FENG Q L, LIU B P, YE M. Tectonic paleogeographic pattern of paleo Tethyan stage in south China[J]. Geological Science and Technology Information, 1996, 15(3):1-6.
11 周小进. 中国南方二叠纪构造—层序岩相古地理[D]. 长沙:中南大学, 2009:26-28.
ZHOU X J. Tectonic-Sequence-Based Lithofaeies and Paleogeography of Permian in South of China[D]. Changsha: Central South University, 2009:26-28.
12 刘光祥,金之均,邓模,等.川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质,2015,36(3):482-487.
LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology,2015,36(3):482-487.
13 刘忠宝, 胡宗全, 刘光祥,等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145.
LIU Z B, HU Z Q, LIU G X, et al. Pore characteristics and controlling factors of continental shale reservoirs inthe Lower Jurassic Ziliujing Formation,northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1):136-145.
14 金之钧, 胡宗全, 高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
15 牟传龙, 周恳恳, 梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4):526-532.
MOU C L, ZHOU K K, LIANG W, et al. Early paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4):526-532.
16 高凤琳, 王成锡, 宋岩,等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2):360-367.
GAO F L, WANG C X,SONG Y, et al. Ar-ion polishing FE-SEM analysis of organic maceral identification[J].Petroleum Geology & Experiment, 2021, 43(2):360-367.
17 王鹏威,张亚雄,刘忠宝,等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11):1-11.
WANG P W,ZHANG Y X,LIU Z B,et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling in eastern Sichuan[J]. Natural Gas Geoscience,2021,32(11):1-11.
18 KOUCKS R, ZHANG T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin,2016,100(1-11):1693-1722.
19 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6):643-647.
ZHAO X Y, HE D B. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6):643-647.
20 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
21 曹涛涛, 刘光祥, 曹清古,等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1):40-53.
CAO T T, LIU G X, CAO Q G, et al. Influence of maceral composition on organic pore development in shale:A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1):40-53.
22 ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry,2012,47(6): 120-131.
23 JI L M, ZHANG T W, MILLIKEN K L, et al. Experimental investigation of main controls to methane adsorption in clay rich rocks[J].Applied Geochemistry,2012,27(12):2533-2545.
24 ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine & Petroleum Geology, 2009, 26(6): 916-927.
25 李军, 武清钊, 路菁,等. 页岩气储层总孔隙度与有效孔隙度测量及测井评价——以四川盆地龙马溪组页岩气储层为例[J]. 石油与天然气地质, 2017, 38(3):602-609.
LI J,WU Q Z,LU J,et al.Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs: A case from the Silurian Longmaxi Formation shale in the Sichuan Basin[J]. Oil & Gas Geology,2017,38(3):602-609.
26 LU J, RUPPEL S C, ROWE H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J]. AAPG Bulletin, 2015, 99(2): 333-357.
27 任俊豪, 任晓海, 宋海强,等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11):1366-1375.
REN J H,REN X H,SONG H Q,et al.Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J].Acta Petrolei Sinica,2020,41(11):1366-1375.
28 HU Y, DEVEGOWDA D, RICHARD S. A microscopic characterization of wettability in shale kerogen with varying maturity levels[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1078-1086.
29 YANG R, JIA A, HE S, et al. Water adsorption characteristics of organic-rich Wufeng and Longmaxi Shales, Sichuan Basin (China)[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107387-107399.
30 李靖, 李相方, 王香增, 等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响[J].力学学报,2016,48(5):1217-1228.
LI J, LI X F, WANG X Z, et al. Effect of water distribution on methane adsorption capacity in shale clay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228.
[1] Huaicai FAN, Jian ZHANG, Shengjie YUE, Haoran HU. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization [J]. Natural Gas Geoscience, 2022, 33(4): 512-519.
[2] Xiaoming LI, Yarong WANG, Wen LIN, Lihong MA, Dexun LIU, Jirong LIU, Yu ZHANG. Micro-pore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, Hubei Province [J]. Natural Gas Geoscience, 2022, 33(4): 629-641.
[3] Jianfa WU, Shengxian ZHAO, Yingkun ZHANG, Ziqiang XIA, Bo LI, Shusheng YUAN, Jian ZHANG, Chenglin ZHANG, Yuanhan HE, Shangbin CHEN. Material composition and pore contribution of deep shale gas reservoir and its significance for exploration and development [J]. Natural Gas Geoscience, 2022, 33(4): 642-653.
[4] Xiaoyan ZOU, Xianqing LI, Yuan WANG, Jizhen ZHANG, Pei ZHAO. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin [J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
[5] Qin ZHANG,Zhen QIU,Leifu ZHANG,Yuman WANG,Yufeng XIAO,Dan LIU,Wen LIU,Shuxin LI,Xingtao LI. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin [J]. Natural Gas Geoscience, 2022, 33(3): 396-407.
[6] Yuanzhen MA, Meng WANG, Jiamin LI, Jianguang ZHAO, Tengfei JIA, Junqing ZHU. Characteristics and gas-bearing characteristics of coal-measure shale reservoirs in the Upper Paleozoic of Qinshui Basin [J]. Natural Gas Geoscience, 2022, 33(3): 441-450.
[7] Ronghui FANG, Xiaoqiang LIU, Cong ZHANG, Meijun LI, Xianghua XIA, Zhilong HUANG, Chengyu YANG, Qiuya HAN, Hanqin TANG. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province [J]. Natural Gas Geoscience, 2022, 33(1): 138-152.
[8] Jing XIE, Jianzhou CHEN, Yongfeng XU, Guocang WANG, Jin WANG, Qing LI, Qiwei WANG. Logging evaluation of Triassic Babaoshan Formation shale reservoir in East Kunlun area of northern Qinghai-Tibet Plateau [J]. Natural Gas Geoscience, 2021, 32(9): 1285-1296.
[9] Jian LI, Xiaobo WANG, Lianhua HOU, Chang CHEN, Jianying GUO, Chunlong YANG, Yifeng WANG, Zhisheng LI, Huiying CUI, Aisheng HAO, Lu ZHANG. Geochemical characteristics and resource potential of shale gas in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106.
[10] Shengli XI, Wuling MO, Xinshe LIU, Lei ZHANG, Jian LI, Zhengliang HUANG, Min WANG, Chunlin ZHANG, Qiuying ZHU, Yu YAN, Nengwu ZHOU. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1 [J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246.
[11] Linghui CAI, Ye YU, Jianhua GUO, Yanran HUANG, Yuancao GUO. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan Province [J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
[12] Fan-hui ZENG, Tao ZHANG, Lei MA, Jian-chun GUO, Bo ZENG. Dynamic permeability model of volume fracturing network in deep shale gas reservoir and its application [J]. Natural Gas Geoscience, 2021, 32(7): 941-949.
[13] Zhuo WEN, Yong-shang KANG, Liu-xu KANG, Jun LI, Qun ZHAO, Hong-yan WANG. Geological evaluation indexes and lowest limit standards for selection of shale gas industrial construction areas: Case study of X block in southern Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(7): 950-960.
[14] Yu-ling JIANG, Xiao-yu CHEN, Han-yong BAO. A new model for rapid prediction of horizontal well production decline in shale gas staged fracturing: Case study of Fuling shale gas field [J]. Natural Gas Geoscience, 2021, 32(6): 845-850.
[15] Guang-rong ZHANG, Hai-kuan NIE, Xuan TANG, Dong-hui LI, Chuan-xiang SUN, Pei-xian ZHANG. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore:Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(6): 888-898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[4] SHAO Rong, YE Jiaren, CHEN Zhangyu . THE APPLICATION OF FLUID INCLU SION IN OIL SYSTEM RESEARCH, FAULT DEPRESION BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 11 -14 .
[5] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[6] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[7] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[8] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[9] . SIGNIFICANCE OF STUDING FAULT SEAL IN HYDROCARBON ACCUMULATION SYSTEM ANALYSIS[J]. Natural Gas Geoscience, 2000, 11(3): 1 -8 .
[10] FU Guang, YANG Mian. DEVELOPMENT CHARACTERISTICS OF CAPROCK AND ITS EFFECT FOR FORMATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(3): 18 -24 .